A238742 Number of partitions p of 2n+1 such that n - (number of parts of p) is a part of p.
0, 0, 1, 5, 13, 31, 59, 109, 180, 301, 461, 712, 1051, 1547, 2200, 3138, 4349, 6036, 8211, 11146, 14901, 19908, 26232, 34513, 44953, 58412, 75244, 96752, 123448, 157201, 198931, 251155
Offset: 1
Examples
a(4) counts these partitions of 9: 72, 711, 621, 531, 441.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t]; Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*) Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*) Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*) p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n-1, k-1] + p[n-k, k]]]; q[n_, k_, e_] := q[n, k, e] = If[n-e < k-1 , 0, If[k == 1, If[n == e, 1, 0], p[n-e, k-1]]]; a[n_] := Sum[q[2*n+1, u, n-u], {u, n-1}]; Array[a, 100] (* Giovanni Resta, Mar 12 2014 *)