cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238743 Triangle read by rows: T(n,k) = A059382(n)/(A059382(k)*A059382(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 26, 26, 1, 1, 56, 208, 56, 1, 1, 124, 992, 992, 124, 1, 1, 182, 3224, 6944, 3224, 182, 1, 1, 342, 8892, 42408, 42408, 8892, 342, 1, 1, 448, 21888, 153216, 339264, 153216, 21888, 448, 1, 1, 702, 44928, 590976, 1920672, 1920672, 590976, 44928
Offset: 0

Views

Author

Tom Edgar, Mar 04 2014

Keywords

Comments

We assume that A059382(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_3 given in A059376.
Another name might be the 3-totienomial coefficients.

Examples

			The first five terms in the third Jordan totient function are 1,7,26,56,124 and so T(4,2) = 56*26*7*1/((7*1)*(7*1))=208 and T(5,3) = 124*56*26*7*1/((26*7*1)*(7*1))=992.
The triangle begins
1
1 1
1 7   1
1 26  26   1
1 56  208  56   1
1 124 992  992  124  1
1 182 3224 6944 3224 182 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^3*prod([1-1/p^3 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059382(n)/(A059382(k)* A059382(n-k)).
T(n,k) = prod_{i=1..n} A059376(i)/(prod_{i=1..k} A059376(i)*prod_{i=1..n-k} A059376(i)).
T(n,k) = A059376(n)/n*(k/A059376(k)*T(n-1,k-1)+(n-k)/A059376(n-k)*T(n-1,k)).