This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238751 #25 Nov 07 2024 22:00:14 %S A238751 11,251,1019,4091,65531,4294967291 %N A238751 Lesser prime of third Mersenne prime pair {2^m - 5, 5*2^m - 1}. %C A238751 By comparing A059608 and A001770, the next term, if it exists, is larger than 2^350028. - _Giovanni Resta_, Mar 06 2014 %C A238751 Lesser prime of Mersenne prime pair of order k and of the form {2^m - (2k - 1), (2k - 1)*2^m - 1}: %C A238751 for order k = 1: 3, 7, 31, 127, 8191, 131071, ... (Mersenne primes A000668) %C A238751 for order k = 2: 5, 13, 61, ... %C A238751 for order k = 3: 11, 251, 1019, 4091, 655531, 4294967291, ... (this sequence) %C A238751 for order k = 4: %C A238751 for order k = 5: 2097143, ... %C A238751 for order k = 6: 3, ... %C A238751 for order k = 7: %C A238751 for order k = 8: 17, 1009, 16369, ... %C A238751 for order k = 9: 47, 65519, 1048559, 68719476719, ... %C A238751 for order k = 10: 13, 2097133, ... %C A238751 for order k = 11: 107, 8171, ... %C A238751 for order k = 12: 41, 233, 4073, ... %C A238751 for order k = 13: 487, ... %C A238751 for order k = 14: 5, 229, 997, ... %C A238751 for order k = 15: 97, ... %F A238751 Numbers 2^m - 5 for m belonging to the intersection of A001770 and A059608. - _Max Alekseyev_, Feb 20 2024 %e A238751 11 is in this sequence because Mersenne prime pair {2^4-(2*3-1) = 11, (2*3-1)*2^4-1 = 79} where 3 is order and 11 is lesser prime (for m = 4). %t A238751 2^Select[Range[1000], PrimeQ[2^# - 5] && PrimeQ[5*2^# - 1] &] - 5 (* _Giovanni Resta_, Mar 06 2014 *) %Y A238751 Cf. A237422, A238694, A238749, A059608, A001770, A156560, A050522. %K A238751 nonn,more %O A238751 1,1 %A A238751 _Ilya Lopatin_ and _Juri-Stepan Gerasimov_, Mar 04 2014