cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239633 Triangle read by rows: T(n,k) = A059384(n)/(A059384(k)*A059384(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 31, 1, 1, 242, 242, 1, 1, 992, 7744, 992, 1, 1, 3124, 99968, 99968, 3124, 1, 1, 7502, 756008, 3099008, 756008, 7502, 1, 1, 16806, 4067052, 52501944, 52501944, 4067052, 16806, 1, 1, 31744, 17209344, 533489664, 1680062208, 533489664, 17209344, 31744
Offset: 0

Views

Author

Tom Edgar, Mar 22 2014

Keywords

Comments

We assume that A059384(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_5 given in A059378.
Another name might be the 5-totienomial coefficients.

Examples

			The first five terms in the fifth Jordan totient function are 1,31,242,992,3124 and so T(4,2) = 992*242*31*1/((31*1)*(31*1))=7744 and T(5,3) = 3124*992*242*31*1/((242*31*1)*(31*1))=99968.
The triangle begins
1
1 1
1 31   1
1 242  242   1
1 992  7744  992   1
1 3124 99968 99968 3124 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^5*prod([1-1/p^5 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059384(n)/(A059384(k)* A059384(n-k)).
T(n,k) = prod_{i=1..n} A059378(i)/(prod_{i=1..k} A059378(i)*prod_{i=1..n-k} A059378(i)).
T(n,k) = A059378(n)/n*(k/A059378(k)*T(n-1,k-1)+(n-k)/A059378(n-k)*T(n-1,k)).

A255915 Triangle read by rows: T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 63, 1, 1, 728, 728, 1, 1, 4032, 46592, 4032, 1, 1, 15624, 999936, 999936, 15624, 1, 1, 45864, 11374272, 62995968, 11374272, 45864, 1, 1, 117648, 85647744, 1838132352, 1838132352, 85647744, 117648, 1, 1, 258048, 481886208, 30358831104, 117640470528
Offset: 0

Views

Author

Tom Edgar, Mar 10 2015

Keywords

Comments

These are the generalized binomial coefficients associated with the Jordan totient function J_6 given in A069091.
Another name might be the 6-totienomial coefficients.

Examples

			The first five terms in the sixth Jordan totient function are 1, 63, 728, 4032, 15624 and so T(4,2) = 4032*728*63*1/((63*1)*(63*1)) = 46592 and T(5,3) = 15624*4032*728*63*1/((728*63*1)*(63*1)) = 999936.
The triangle begins:
1;
1, 1;
1, 63, 1;
1, 728, 728, 1;
1, 4032, 46592, 4032, 1;
1, 15624, 999936, 999936, 15624, 1;
1, 45864, 11374272, 62995968, 11374272, 45864, 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    Triangle=[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).
T(n,k) = Product_{i=1..n} A069091(i)/(Product_{i=1..k} A069091(i)*Product_{i=1..n-k} A069091(i)).
T(n,k) = A069091(n)/n*(k/A069091(k)*T(n-1,k-1)+(n-k)/A069091(n-k)*T(n-1,k)).
Showing 1-2 of 2 results.