cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238756 Number of ordered ways to write n = k + m (k > 0 and m > 0) such that 2*k + 1, prime(prime(k)) - prime(k) + 1 and prime(prime(m)) - prime(m) + 1 are all prime.

Original entry on oeis.org

0, 1, 2, 3, 3, 2, 3, 3, 3, 4, 2, 5, 4, 3, 6, 4, 4, 3, 3, 6, 5, 5, 4, 6, 6, 5, 6, 2, 7, 5, 5, 6, 4, 4, 4, 5, 5, 8, 2, 5, 4, 5, 8, 2, 5, 2, 7, 4, 8, 6, 4, 5, 3, 8, 4, 7, 5, 3, 7, 7, 5, 7, 5, 7, 9, 8, 7, 5, 9, 7, 10, 9, 7, 7, 6, 9, 10, 4, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 10^7.
The conjecture suggests that there are infinitely many primes p with 2*pi(p) + 1 and prime(p) - p + 1 both prime.

Examples

			a(6) = 2 since 6 = 2 + 4 with 2*2 + 1 = 5, prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 and prime(prime(4)) - prime(4) + 1 = prime(7) - 7 + 1 = 17 - 6 = 11 all prime, and 6 = 3 + 3 with 2*3 + 1 = 7 and prime(prime(3)) - prime(3) + 1 = prime(5) - 5 + 1 = 11 - 4 = 7 both prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]
    a[n_]:=Sum[If[PrimeQ[2k+1]&&p[k]&&p[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]