A238756 Number of ordered ways to write n = k + m (k > 0 and m > 0) such that 2*k + 1, prime(prime(k)) - prime(k) + 1 and prime(prime(m)) - prime(m) + 1 are all prime.
0, 1, 2, 3, 3, 2, 3, 3, 3, 4, 2, 5, 4, 3, 6, 4, 4, 3, 3, 6, 5, 5, 4, 6, 6, 5, 6, 2, 7, 5, 5, 6, 4, 4, 4, 5, 5, 8, 2, 5, 4, 5, 8, 2, 5, 2, 7, 4, 8, 6, 4, 5, 3, 8, 4, 7, 5, 3, 7, 7, 5, 7, 5, 7, 9, 8, 7, 5, 9, 7, 10, 9, 7, 7, 6, 9, 10, 4, 5, 5
Offset: 1
Keywords
Examples
a(6) = 2 since 6 = 2 + 4 with 2*2 + 1 = 5, prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 and prime(prime(4)) - prime(4) + 1 = prime(7) - 7 + 1 = 17 - 6 = 11 all prime, and 6 = 3 + 3 with 2*3 + 1 = 7 and prime(prime(3)) - prime(3) + 1 = prime(5) - 5 + 1 = 11 - 4 = 7 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1] a[n_]:=Sum[If[PrimeQ[2k+1]&&p[k]&&p[n-k],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments