A238759 The number of P-positions in the game of Nim with up to five piles, allowing for piles of zero, such that the total number of objects in all piles is 2n.
1, 10, 15, 100, 65, 150, 175, 1000, 565, 650, 475, 1500, 925, 1750, 1875, 10000, 5565, 5650, 3475, 6500, 3725, 4750, 3875, 15000, 8425, 9250, 6375, 17500, 10625, 18750, 19375, 100000, 55565, 55650, 33475, 56500, 31725, 34750, 23875, 65000
Offset: 0
Keywords
Examples
The P-positions with the total of 4 are permutations of (0,0,0,2,2) and (0,1,1,1,1). Therefore, a(2)=15.
Links
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 17 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[ Select[Flatten[ Table[{n, k, j, i, BitXor[n, k, j, i]}, {n, 0, a}, {k, 0, a}, {j, 0, a}, {i, 0, a}], 3], Total[#] == a &]], {a, 0, 90, 2}] (* Second program: *) (* b = A238147 *) b[n_] := b[n] = Which[n <= 1, {1, 11}[[n+1]], OddQ[n], 11 b[(n-1)/2] + 5 b[(n-1)/2 - 1], EvenQ[n], b[(n-2)/2 + 1] + 15 b[(n-2)/2]]; Join[{1}, Differences[Array[b, 40, 0]]] (* Jean-François Alcover, Dec 14 2018 *)
Formula
a(2n+1) = 10*a(n), a(2n+2) = a(n+1) + 5*a(n).
Comments