This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238761 #17 Jul 10 2019 10:39:33 %S A238761 1,2,3,3,8,10,4,15,30,35,5,24,63,112,126,6,35,112,252,420,462,7,48, %T A238761 180,480,990,1584,1716,8,63,270,825,1980,3861,6006,6435,9,80,385,1320, %U A238761 3575,8008,15015,22880,24310,10,99,528,2002,6006,15015,32032,58344,87516,92378 %N A238761 Subtriangle of the generalized ballot numbers, T(n,k) = A238762(2*k-1,2*n-1), 1<=k<=n, read by rows. %F A238761 T(n,n) = A001700(n-1). %F A238761 T(n,n-1) = A162551(n-1). %e A238761 [n\k 1 2 3 4 5 6 7 ] %e A238761 [1] 1, %e A238761 [2] 2, 3, %e A238761 [3] 3, 8, 10, %e A238761 [4] 4, 15, 30, 35, %e A238761 [5] 5, 24, 63, 112, 126, %e A238761 [6] 6, 35, 112, 252, 420, 462, %e A238761 [7] 7, 48, 180, 480, 990, 1584, 1716. %p A238761 binom2 := proc(n, k) local h; %p A238761 h := n -> (n-((1-(-1)^n)/2))/2; %p A238761 n!/(h(n-k)!*h(n+k)!) end: %p A238761 A238761 := (n, k) -> binom2(n+k, n-k+1)*(n-k+1)/(n+k): %p A238761 seq(print(seq(A238761(n, k), k=1..n)), n=1..7); %t A238761 h[n_] := (n - ((1 - (-1)^n)/2))/2; %t A238761 binom2[n_, k_] := n!/(h[n-k]! h[n+k]!); %t A238761 T[n_, k_] := binom2[n+k, n-k+1] (n-k+1)/(n+k); %t A238761 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 10 2019, from Maple *) %o A238761 (Sage) %o A238761 @CachedFunction %o A238761 def ballot(p, q): %o A238761 if p == 0 and q == 0: return 1 %o A238761 if p < 0 or p > q: return 0 %o A238761 S = ballot(p-2, q) + ballot(p, q-2) %o A238761 if q % 2 == 1: S += ballot(p-1, q-1) %o A238761 return S %o A238761 A238761 = lambda n, k: ballot(2*k-1, 2*n-1) %o A238761 for n in (1..7): [A238761(n, k) for k in (1..n)] %Y A238761 Row sums are A002054. %Y A238761 Cf. A001700, A009766. %K A238761 nonn,tabl %O A238761 1,2 %A A238761 _Peter Luschny_, Mar 05 2014