This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238762 #22 Feb 25 2025 20:56:05 %S A238762 1,0,1,1,0,1,0,2,0,3,1,0,2,0,2,0,3,0,8,0,10,1,0,3,0,5,0,5,0,4,0,15,0, %T A238762 30,0,35,1,0,4,0,9,0,14,0,14,0,5,0,24,0,63,0,112,0,126,1,0,5,0,14,0, %U A238762 28,0,42,0,42,0,6,0,35,0,112,0,252,0,420,0,462 %N A238762 Triangle read by rows, generalized ballot numbers, 0<=k<=n. %C A238762 Compare with the definition of the Motzkin triangle A238763. %D A238762 D. E. Knuth, TAOCP, Vol. 4a, Section 7.2.1.6, Eq. 22, p. 451. %H A238762 P. Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a> %F A238762 Definition: T(0, 0) = 1; T(p, q) = 0 if p < 0 or p > q; T(p, q) = T(p-2, q) + (q mod 2) T(p-1, q-1) + T(p, q-2). (The notation is in the style of Knuth, TAOCP 4a (7.2.1.6)). %F A238762 T(2*k, 2*n) are the classical ballot numbers A009766(n, k). %F A238762 T(2*k-1, 2*n-1) = A238761(n, k). %F A238762 T(n,k) = c*A189231(a, b) with a = floor((n + k + (k mod 2))/2), b = floor((n-k)/2) and c = ((n+k+1) mod 2). %F A238762 T(n, k) = ((n+k+1) mod 2)*((floor(n/2)+floor(k/2) + 1)^(k mod 2)) * (binomial(floor(n/2) + floor(k/2), floor(n/2)) - binomial(floor(n/2) + floor(k/2), floor(n/2) + 1)). %F A238762 T(n, k) = ((n+k+1) mod 2)*((floor(n/2)+floor(k/2) + 1)^(k mod 2)) * (floor((n-k)/2) + 1)/(floor(n/2) + 1) * binomial(floor(n/2) + floor(k/2), floor(n/2)). %F A238762 T(n, n) = A057977(n). %F A238762 T(n, n-2) = A238452(n-1). %F A238762 Row sums are A238879. %e A238762 [n\k 0 1 2 3 4 5 6 7] %e A238762 [0] 1, %e A238762 [1] 0, 1, %e A238762 [2] 1, 0, 1, %e A238762 [3] 0, 2, 0, 3, %e A238762 [4] 1, 0, 2, 0, 2, %e A238762 [5] 0, 3, 0, 8, 0, 10, %e A238762 [6] 1, 0, 3, 0, 5, 0, 5, %e A238762 [7] 0, 4, 0, 15, 0, 30, 0, 35. %p A238762 binom2 := proc(n, k) local h; %p A238762 h := n -> (n-((1-(-1)^n)/2))/2; %p A238762 n!/(h(n-k)!*h(n+k)!) end: %p A238762 A238762 := proc(n, k) local a,b,c; %p A238762 a := iquo(n+k+2+modp(n,2), 2); %p A238762 b := iquo(n-k+2, 2); %p A238762 c := modp(n+k+1, 2); %p A238762 binom2(a,b)*b*c/a end: %p A238762 seq(print(seq(A238762(n, k), k=0..n)), n=0..7); %p A238762 # Alternativ: %p A238762 ballot := proc(p, q) option remember; %p A238762 if p = 0 and q = 0 then return 1 fi; %p A238762 if p < 0 or p > q then return 0 fi; %p A238762 ballot(p-2, q) + ballot(p, q-2); %p A238762 if type(q, odd) then % + ballot(p-1, q-1) fi; %p A238762 % end: %t A238762 T[n_, k_] := T[n, k] = Which[k == 0 && n == 0, 1, k < 0 || k > n, 0, True, s = T[n, k - 2] + T[n - 2, k]; If[OddQ[n], s += T[n - 1, k - 1]]; s]; %t A238762 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 10 2019, adapted from Sage code *) %o A238762 (Sage) %o A238762 @CachedFunction %o A238762 def ballot(p, q): %o A238762 if p == 0 and q == 0: return 1 %o A238762 if p < 0 or p > q: return 0 %o A238762 S = ballot(p-2, q) + ballot(p, q-2) %o A238762 if q % 2 == 1: S += ballot(p-1, q-1) %o A238762 return S %o A238762 for q in range(8): [ballot(p, q) for p in (0..q)] %Y A238762 Cf. A009766, A189231, A238761, A238879. %K A238762 nonn,tabl %O A238762 0,8 %A A238762 _Peter Luschny_, Mar 05 2014