cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238776 Primes p with prime(p) - p + 1 and prime(q) - q + 1 both prime, where q = prime(2*pi(p)+1) with pi(.) given by A000720.

Original entry on oeis.org

2, 5, 7, 13, 31, 41, 43, 83, 109, 151, 211, 281, 307, 317, 349, 353, 499, 601, 709, 757, 883, 911, 971, 1447, 1453, 1483, 1531, 1801, 2053, 2281, 2819, 2833, 3163, 3329, 3331, 3881, 3907, 4051, 4243, 4447, 4451, 4703, 4751, 5483, 5659, 5701, 5737, 6011, 6271, 6311, 6361, 6379, 6427, 6571, 6827, 6841, 6983, 7159, 7879, 8209
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2014

Keywords

Comments

Conjecture: The sequence has infinitely many terms.
This is motivated by the conjecture in A238766. Note that the sequence is a subsequence of A234695.

Examples

			a(1) = 2 since prime(2) - 2 + 1 = 2 and prime(prime(2*pi(2)+1)) - prime(2*pi(2)+1) + 1 = prime(5) - 5 + 1 = 11 - 4 = 7 are both prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]
    n=0;Do[If[p[k]&&p[2k+1],n=n+1;Print[n," ",Prime[k]]],{k,1,1029}]