This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238779 #8 Mar 17 2014 01:26:44 %S A238779 0,1,0,1,1,2,2,4,3,7,6,11,9,18,15,27,23,40,35,59,51,85,75,119,106,168, %T A238779 150,231,208,316,286,428,388,575,525,764,700,1012,929,1327,1223,1732, %U A238779 1601,2246,2080,2898,2692,3715,3459,4748,4428,6032,5638,7635,7150 %N A238779 Number of palindromic partitions of n with greatest part of multiplicity 2. %C A238779 Palindromic partitions are defined at A025065. %e A238779 a(8) counts these partitions (each written as a palindrome): 44, 323, 1331, 112211. %t A238779 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &] %t A238779 Table[p[n, 1], {n, 1, 12}] %t A238779 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *) %t A238779 Table[p[n, 2], {n, 1, 12}] %t A238779 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *) %t A238779 Table[p[n, 3], {n, 1, 12}] %t A238779 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *) %t A238779 Table[p[n, 4], {n, 1, 12}] %t A238779 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *) %t A238779 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238779 Cf. A025065, A087897, A238780, A114921. %K A238779 nonn,easy %O A238779 1,6 %A A238779 _Clark Kimberling_, Mar 05 2014