This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238780 #7 Mar 11 2014 13:41:26 %S A238780 0,0,0,0,1,0,0,0,1,1,1,1,2,2,3,2,5,4,7,5,10,8,14,11,20,16,26,21,37,31, %T A238780 48,40,65,55,85,72,113,97,145,125,190,165,242,211,313,274,396,348,505, %U A238780 446,633,561,801,713,998,890,1249,1118,1548,1389,1922,1730 %N A238780 Number of palindromic partitions of n whose greatest part has multiplicity 4. %C A238780 Palindromic partitions are defined at A025065. %e A238780 a(8) counts these partitions (written as palindromes): 3333, 11222211. %t A238780 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &] %t A238780 Table[p[n, 1], {n, 1, 12}] %t A238780 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *) %t A238780 Table[p[n, 2], {n, 1, 12}] %t A238780 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *) %t A238780 Table[p[n, 3], {n, 1, 12}] %t A238780 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *) %t A238780 Table[p[n, 4], {n, 1, 12}] %t A238780 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *) %t A238780 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238780 Cf. A025065, A087897, A238779. %K A238780 nonn,easy %O A238780 0,13 %A A238780 _Clark Kimberling_, Mar 05 2014