This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238781 #5 Mar 12 2014 12:56:28 %S A238781 1,1,1,1,2,1,2,2,3,2,4,2,6,4,6,4,10,5,12,7,16,8,20,10,27,14,32,16,44, %T A238781 19,53,25,69,31,84,36,108,47,130,55,167,67,202,83,252,99,305,119,380, %U A238781 146,456,173,564,208,676,250,826,298,991,352,1205,424,1435 %N A238781 Number of palindromic partitions of n whose least part has multiplicity 1. %C A238781 Palindromic partitions are defined at A025065. %e A238781 a(11) counts these partitions (written as palindromes): [11], [5,1,5], [4,3,4], [2,3,1,3,2]. %t A238781 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] %t A238781 Table[p[n, 1], {n, 1, 12}] %t A238781 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) %t A238781 Table[p[n, 2], {n, 1, 12}] %t A238781 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) %t A238781 Table[p[n, 3], {n, 1, 12}] %t A238781 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) %t A238781 Table[p[n, 4], {n, 1, 12}] %t A238781 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) %t A238781 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238781 Cf. A025065, A238782, A238783, A238784, A238779. %K A238781 nonn,easy %O A238781 1,5 %A A238781 _Clark Kimberling_, Mar 05 2014