This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238782 #4 Mar 12 2014 12:56:39 %S A238782 0,1,0,2,1,3,2,5,3,9,5,11,9,18,12,25,18,35,26,48,36,67,50,87,69,119, %T A238782 91,157,123,206,162,266,213,349,277,443,360,572,460,725,590,919,750, %U A238782 1156,950,1456,1195,1812,1502,2263,1872,2802,2334,3468,2892,4267,3574 %N A238782 Number of palindromic partitions of n whose least part has multiplicity 2. %C A238782 Palindromic partitions are defined at A025065. %e A238782 a(8) counts these partitions (written as palindromes): 161, 44, 422, 1331, 12221. %t A238782 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] %t A238782 Table[p[n, 1], {n, 1, 12}] %t A238782 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) %t A238782 Table[p[n, 2], {n, 1, 12}] %t A238782 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) %t A238782 Table[p[n, 3], {n, 1, 12}] %t A238782 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) %t A238782 Table[p[n, 4], {n, 1, 12}] %t A238782 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) %t A238782 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238782 Cf. A025065, A238781, A238783, A238784, A238779. %K A238782 nonn,easy %O A238782 1,4 %A A238782 _Clark Kimberling_, Mar 05 2014