This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238783 #4 Mar 12 2014 12:56:49 %S A238783 0,0,1,0,0,1,1,0,2,0,2,2,2,1,5,1,5,3,8,2,10,4,13,6,16,6,25,7,28,11,38, %T A238783 13,48,16,61,22,75,25,100,30,119,41,153,47,186,59,234,73,283,87,356, %U A238783 106,426,132,528,154,639,186,781,227,935,271,1143,322,1362 %N A238783 Number of palindromic partitions of n whose least part has multiplicity 3. %C A238783 Palindromic partitions are defined at A025065. %e A238783 a(9) counts these partitions (written as palindromes): 333, 31113. %t A238783 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] %t A238783 Table[p[n, 1], {n, 1, 12}] %t A238783 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) %t A238783 Table[p[n, 2], {n, 1, 12}] %t A238783 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) %t A238783 Table[p[n, 3], {n, 1, 12}] %t A238783 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) %t A238783 Table[p[n, 4], {n, 1, 12}] %t A238783 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) %t A238783 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238783 Cf. A025065, A238781, A238782, A238784, A238779. %K A238783 nonn,easy %O A238783 1,9 %A A238783 _Clark Kimberling_, Mar 05 2014