cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238784 Number of palindromic partitions of n whose least part has multiplicity 4.

This page as a plain text file.
%I A238784 #4 Mar 12 2014 12:56:57
%S A238784 0,0,0,1,0,1,1,3,1,3,3,7,4,9,6,15,10,19,15,30,21,39,30,56,41,75,58,
%T A238784 103,77,132,106,181,139,231,185,307,241,392,314,508,406,643,523,826,
%U A238784 665,1037,849,1313,1070,1638,1350,2057,1689,2547,2112,3172,2622,3902
%N A238784 Number of palindromic partitions of n whose least part has multiplicity 4.
%C A238784 Palindromic partitions are defined at A025065.
%e A238784 a(12) counts these 7 partitions (written as palindromes):  11811, 114411, 22422, 1124211, 3333, 1132311, 11222211.
%t A238784 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &]
%t A238784 Table[p[n, 1], {n, 1, 12}]
%t A238784 t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *)
%t A238784 Table[p[n, 2], {n, 1, 12}]
%t A238784 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *)
%t A238784 Table[p[n, 3], {n, 1, 12}]
%t A238784 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *)
%t A238784 Table[p[n, 4], {n, 1, 12}]
%t A238784 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *)
%t A238784 (* _Peter J. C. Moses_, Mar 03 2014 *)
%Y A238784 Cf. A025065, A238781, A238782, A238783, A238779.
%K A238784 nonn,easy
%O A238784 1,8
%A A238784 _Clark Kimberling_, Mar 05 2014