This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238786 #4 Mar 12 2014 12:57:18 %S A238786 1,2,2,3,3,6,6,10,10,16,17,25,26,38,40,57,59,83,86,119,123,169,174, %T A238786 235,241,325,333,443,453,599,612,802,818,1067,1087,1407,1432,1845, %U A238786 1876,2401,2440,3110,3158,4003,4062,5130,5202,6537,6625,8298,8406,10483 %N A238786 Number of palindromic partitions of n whose greatest part has multiplicity <= 3. %C A238786 Palindromic partitions are defined at A025065. %e A238786 a(8) counts these 10 partitions (written as palindromes): 8, 161, 44, 242, 11411, 323, 1331, 12221, 112211, 1112111. %t A238786 z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] <= k) &] %t A238786 Table[p[n, 1], {n, 1, 12}] %t A238786 t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238785 *) %t A238786 Table[p[n, 3], {n, 1, 12}] %t A238786 t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238786 *) %t A238786 Table[p[n, 4], {n, 1, 12}] %t A238786 t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238787 *) %t A238786 (* _Peter J. C. Moses_, Mar 03 2014 *) %Y A238786 Cf. A025065, A238785, A238787, A238779. %K A238786 nonn,easy %O A238786 1,2 %A A238786 _Clark Kimberling_, Mar 05 2014