A238789 Number of palindromic partitions of n whose least part has multiplicity <= 3.
1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 11, 15, 17, 23, 23, 30, 33, 43, 46, 57, 62, 79, 83, 103, 112, 139, 148, 180, 195, 236, 253, 304, 330, 396, 422, 501, 543, 644, 690, 810, 876, 1027, 1105, 1286, 1388, 1614, 1734, 2004, 2165, 2496, 2684, 3081, 3324, 3808, 4096
Offset: 1
Examples
a(9) counts these 8 partitions (written as palindromes): 9, 171, 252, 414, 333, 13131, 12321, 22122.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] <= k) &] Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238788 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238789 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238790 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments