This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238800 #9 Mar 14 2014 11:43:10 %S A238800 1,1,1,-2,1,-3,1,-4,2,1,-5,5,1,-6,9,-10,1,-7,14,-35,1,-8,20,-80,26,1, %T A238800 -9,27,-150,117,1,-10,35,-250,325,-454,1,-11,44,-385,715,-2497,1,-12, %U A238800 54,-560,1365,-8172,5914,1,-13 %N A238800 Unreduced numerators in triangle that leads to the Euler numbers A198631(n)/A006519(n+1). %C A238800 We use the array ASPEC mentioned in A191302: %C A238800 2, 1, 1, 1, 1, 1, 1, 1,... %C A238800 2, 3, 4, 5, 6, 7, 8, 9,... %C A238800 2, 5, 9, 14, 20, 27, 35, 44,... %C A238800 2, 7, 16, 30, 50, 77, 112, 156,... %C A238800 with the first upper diagonal of the difference table of the autosequence A198631(n)/A006519(n+1), i.e., 1/2, -1/4, 1/4, -5/8, 13/4, -227/8, 2957/8,... %C A238800 written by columns: %C A238800 1/2 %C A238800 1/2, %C A238800 1/2, -1/4, %C A238800 1/2, -1/4, %C A238800 1/2, -1/4, 1/4, %C A238800 1/2, -1/4, 1/4, %C A238800 1/2, -1/4, 1/4, -5/8, %C A238800 1/2, -1/4, 1/4, -5/8, %C A238800 etc. %C A238800 Hence, by multiplication of this double triangle by ASPEC, the beginning of the double triangle ESPEC is obtained: %C A238800 E(0) = 1 = 1 %C A238800 E(1) = 1/2 = 1/2 %C A238800 E(2) = 0 = 1/2 -2/4 %C A238800 E(3) = -1/4 = 1/2 -3/4 %C A238800 E(4) = 0 = 1/2 -4/4 +2/4 %C A238800 E(5) = 1/2 = 1/2 -5/4 +5/4 %C A238800 E(6) = 0 = 1/2 -6/4 +9/4 -10/8 %C A238800 E(7) = -17/8 = 1/2 -7/4 +14/4 -35/8 %C A238800 E(8) = 0 = 1/2 -8/4 +20/4 -80/8 +26/4. %C A238800 The terms of the sequence are the reduced numerators. Like A192456(n) for Bernoulli numbers A164555(n)/A027642(n). %e A238800 a(n) by triangle %e A238800 1, %e A238800 1, %e A238800 1, -2, %e A238800 1, -3, %e A238800 1, -4, 2, %e A238800 1, -5, 5, %e A238800 1, -6, 9, -10, %e A238800 1, -7, 14, -35, %e A238800 1, -8, 20, -80, 26, %e A238800 etc. %K A238800 sign,tabf %O A238800 0,4 %A A238800 _Paul Curtz_, Mar 05 2014