A238804 Powers in a variant of Ramanujan's wrong identity for prime number partitions.
0, 2, 5, 10, 17, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 0
Keywords
Examples
GF = 1/((1-x^2)(1-x^3)(1-x^5)(1-x^7)(1-x^11)...) = 1+x^2+x^3+x^4+2*x^5+2*x^6+... (cf. A000607) a(0)=0, c(0)=1: GF - 1 = x^2 + .... a(1)=2, c(1)=1: GF - 1 - x^2/(1-x) = x^5 + ... a(2)=5, c(2)=1: GF - 1 - x^2/(1-x) - x^5/(1-x)(1-x^2) = x^10 + ... a(3)=10, c(3)=1: GF - ... - x^10/(1-x)(1-x^2)(1-x^3) = x^17 + ... a(4)=17, c(4)=1: GF - ... - x^17/(1-x)(1-x^2)(1-x^3)(1-x^4) = -x^21 + ... a(5)=21, c(5)=-1: GF - ... + x^21/... etc.
Programs
-
PARI
p=1/prod(k=1,25,1-x^prime(k),1+O(x^99)); for(k=0,9,[print1(c=valuation(p,x),","),c=polcoeff(p,c)*x^c/prod(j=1,k,1-x^j),"\n",p-=c])
Extensions
Example section corrected by Vaclav Kotesovec, Sep 12 2019
Comments