cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238832 a(1)=0; thereafter a(n) = A238824(n-1)+A238830(n-1).

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 23, 58, 141, 353, 861, 2134, 5236, 12924, 31798, 78382, 193029, 475619, 1171600, 2886427, 7110657, 17517598, 43154977, 106314193, 261908415, 645221312, 1589525242, 3915853416, 9646844896, 23765351096, 58546797181, 144232146189, 355321086856, 875346302897, 2156447153427, 5312485264678
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
    q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
    [seq(q(n),n=1..45)]; # A238831
    e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
    [seq(e(n),n=1..45)]; # A238832
  • PARI
    concat([0,0], Vec(x^3*(2*x^5+2*x^4+x^3-2*x^2+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014

Formula

G.f.: x^3*(2*x^5+2*x^4+x^3-2*x^2+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014