cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238858 Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.

This page as a plain text file.
%I A238858 #50 Mar 07 2020 05:41:32
%S A238858 1,1,0,2,0,0,4,1,0,0,8,7,0,0,0,16,33,4,0,0,0,32,131,53,1,0,0,0,64,473,
%T A238858 429,48,0,0,0,0,128,1611,2748,822,26,0,0,0,0,256,5281,15342,9305,1048,
%U A238858 8,0,0,0,0,512,16867,78339,83590,21362,937,1,0,0,0,0,1024,52905,376159,647891,307660,35841,594,0,0,0,0,0
%N A238858 Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.
%C A238858 Columns k=0-10 give: A011782, A066810(n-1), A241872, A241873, A241874, A241875, A241876, A241877, A241878, A241879, A241880.
%C A238858 The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+5)/2 = A055998(k) for k>0.
%C A238858 T(2n,n) gives A241871(n).
%C A238858 Last nonzero elements of rows give A241881(n).
%C A238858 Row sums give A022493.
%H A238858 Joerg Arndt and Alois P. Heinz, <a href="/A238858/b238858.txt">Rows n = 0..140, flattened</a>
%e A238858 Triangle starts:
%e A238858 00:     1;
%e A238858 01:     1,      0;
%e A238858 02:     2,      0,       0;
%e A238858 03:     4,      1,       0,       0;
%e A238858 04:     8,      7,       0,       0,       0;
%e A238858 05:    16,     33,       4,       0,       0,      0;
%e A238858 06:    32,    131,      53,       1,       0,      0,     0;
%e A238858 07:    64,    473,     429,      48,       0,      0,     0,   0;
%e A238858 08:   128,   1611,    2748,     822,      26,      0,     0,   0, 0;
%e A238858 09:   256,   5281,   15342,    9305,    1048,      8,     0,   0, 0, 0;
%e A238858 10:   512,  16867,   78339,   83590,   21362,    937,     1,   0, 0, 0, 0;
%e A238858 11:  1024,  52905,  376159,  647891,  307660,  35841,   594,   0, 0, 0, 0, 0;
%e A238858 12:  2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0;
%e A238858 ...
%e A238858 The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros):
%e A238858 01:  [ . . . . . ]   0      28:  [ . 1 1 . 1 ]   1
%e A238858 02:  [ . . . . 1 ]   0      29:  [ . 1 1 . 2 ]   1
%e A238858 03:  [ . . . 1 . ]   1      30:  [ . 1 1 1 . ]   1
%e A238858 04:  [ . . . 1 1 ]   0      31:  [ . 1 1 1 1 ]   0
%e A238858 05:  [ . . . 1 2 ]   0      32:  [ . 1 1 1 2 ]   0
%e A238858 06:  [ . . 1 . . ]   1      33:  [ . 1 1 2 . ]   1
%e A238858 07:  [ . . 1 . 1 ]   1      34:  [ . 1 1 2 1 ]   1
%e A238858 08:  [ . . 1 . 2 ]   1      35:  [ . 1 1 2 2 ]   0
%e A238858 09:  [ . . 1 1 . ]   1      36:  [ . 1 1 2 3 ]   0
%e A238858 10:  [ . . 1 1 1 ]   0      37:  [ . 1 2 . . ]   1
%e A238858 11:  [ . . 1 1 2 ]   0      38:  [ . 1 2 . 1 ]   1
%e A238858 12:  [ . . 1 2 . ]   1      39:  [ . 1 2 . 2 ]   1
%e A238858 13:  [ . . 1 2 1 ]   1      40:  [ . 1 2 . 3 ]   1
%e A238858 14:  [ . . 1 2 2 ]   0      41:  [ . 1 2 1 . ]   2
%e A238858 15:  [ . . 1 2 3 ]   0      42:  [ . 1 2 1 1 ]   1
%e A238858 16:  [ . 1 . . . ]   1      43:  [ . 1 2 1 2 ]   1
%e A238858 17:  [ . 1 . . 1 ]   1      44:  [ . 1 2 1 3 ]   1
%e A238858 18:  [ . 1 . . 2 ]   1      45:  [ . 1 2 2 . ]   1
%e A238858 19:  [ . 1 . 1 . ]   2      46:  [ . 1 2 2 1 ]   1
%e A238858 20:  [ . 1 . 1 1 ]   1      47:  [ . 1 2 2 2 ]   0
%e A238858 21:  [ . 1 . 1 2 ]   1      48:  [ . 1 2 2 3 ]   0
%e A238858 22:  [ . 1 . 1 3 ]   1      49:  [ . 1 2 3 . ]   1
%e A238858 23:  [ . 1 . 2 . ]   2      50:  [ . 1 2 3 1 ]   1
%e A238858 24:  [ . 1 . 2 1 ]   2      51:  [ . 1 2 3 2 ]   1
%e A238858 25:  [ . 1 . 2 2 ]   1      52:  [ . 1 2 3 3 ]   0
%e A238858 26:  [ . 1 . 2 3 ]   1      53:  [ . 1 2 3 4 ]   0
%e A238858 27:  [ . 1 1 . . ]   1
%e A238858 There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
%p A238858 # b(n, i, t): polynomial in x where the coefficient of x^k is   #
%p A238858 #             the number of postfixes of these sequences of     #
%p A238858 #             length n having k descents such that the prefix   #
%p A238858 #             has rightmost element i and exactly t ascents     #
%p A238858 b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
%p A238858       `if`(j<i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
%p A238858     end:
%p A238858 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
%p A238858 seq(T(n), n=0..12);
%t A238858 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[j<i, x, 1]*b[n-1, j, t+If[j>i, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 06 2015, translated from Maple *)
%o A238858 (Sage) # Transcription of the Maple program
%o A238858 R.<x> = QQ[]
%o A238858 @CachedFunction
%o A238858 def b(n,i,t):
%o A238858     if n==0: return 1
%o A238858     return sum( ( x if j<i else 1 ) * b(n-1, j, t+(j>i) ) for j in range(t+2) )
%o A238858 def T(n): return b(n, -1, -1)
%o A238858 for n in range(0,10): print(T(n).list())
%Y A238858 Cf. A137251 (ascent sequences with k ascents), A242153 (ascent sequences with k flat steps).
%K A238858 nonn,tabl,look
%O A238858 0,4
%A A238858 _Joerg Arndt_ and _Alois P. Heinz_, Mar 06 2014