This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238861 #20 Sep 20 2019 02:17:51 %S A238861 1,1,1,2,2,3,4,6,7,10,13,18,24,32,41,55,72,95,125,164,212,275,355,459, %T A238861 592,763,980,1257,1605,2044,2598,3298,4179,5290,6685,8435,10623,13353, %U A238861 16751,20978,26228,32746,40831,50850,63247,78569,97475,120770,149429,184641,227853,280832,345722,425134,522232,640847,785604 %N A238861 Compositions with superdiagonal growth: number of compositions (p0, p1, p2, ...) of n with pi - p0 >= i. %H A238861 Vaclav Kotesovec, <a href="/A238861/b238861.txt">Table of n, a(n) for n = 0..8000</a> (terms 0..1000 from Alois P. Heinz) %F A238861 G.f.: 1 + sum(n>=1, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ). [_Joerg Arndt_, Mar 30 2014] %e A238861 There are a(12) = 24 such compositions of 12: %e A238861 01: [ 1 2 3 6 ] %e A238861 02: [ 1 2 4 5 ] %e A238861 03: [ 1 2 5 4 ] %e A238861 04: [ 1 2 9 ] %e A238861 05: [ 1 3 3 5 ] %e A238861 06: [ 1 3 4 4 ] %e A238861 07: [ 1 3 8 ] %e A238861 08: [ 1 4 3 4 ] %e A238861 09: [ 1 4 7 ] %e A238861 10: [ 1 5 6 ] %e A238861 11: [ 1 6 5 ] %e A238861 12: [ 1 7 4 ] %e A238861 13: [ 1 8 3 ] %e A238861 14: [ 1 11 ] %e A238861 15: [ 2 3 7 ] %e A238861 16: [ 2 4 6 ] %e A238861 17: [ 2 5 5 ] %e A238861 18: [ 2 6 4 ] %e A238861 19: [ 2 10 ] %e A238861 20: [ 3 4 5 ] %e A238861 21: [ 3 9 ] %e A238861 22: [ 4 8 ] %e A238861 23: [ 5 7 ] %e A238861 24: [ 12 ] %p A238861 b:= proc(n, i) option remember; `if`(n=0, 1, %p A238861 `if`(i=0, add(b(n-j, j+1), j=1..n), %p A238861 add(b(n-j, i+1), j=i..n))) %p A238861 end: %p A238861 a:= n-> b(n, 0): %p A238861 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 26 2014 %t A238861 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, i, n}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *) %o A238861 (PARI) N=66; q='q+O('q^N); %o A238861 gf = 1 + sum(n=1, N, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ); %o A238861 v=Vec(gf) \\ _Joerg Arndt_, Mar 30 2014 %Y A238861 Cf. A238860 (partitions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition). %Y A238861 Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth). %Y A238861 Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts). %Y A238861 Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts). %K A238861 nonn %O A238861 0,4 %A A238861 _Joerg Arndt_, Mar 24 2014