This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238870 #29 Mar 11 2022 07:48:16 %S A238870 1,1,0,1,1,0,2,2,1,4,4,4,9,10,11,21,25,30,51,62,80,125,157,208,309, %T A238870 399,536,772,1013,1373,1938,2574,3503,4882,6540,8918,12329,16611, %U A238870 22672,31183,42182,57588,78952,107092,146202,200037,271831,371057,507053,689885,941558,1285655,1750672,2388951,3260459,4442179,6060948 %N A238870 Number of compositions of n with c(1) = 1, c(i+1) - c(i) <= 1, and c(i+1) - c(i) != 0. %C A238870 Number of fountains of n coins with at most two successive coins on the same level. %H A238870 Joerg Arndt and Alois P. Heinz, <a href="/A238870/b238870.txt">Table of n, a(n) for n = 0..1000</a> %F A238870 a(n) ~ c / r^n, where r = 0.733216317061133379740342579187365700397652443391231594... and c = 0.172010618097928709454463097802313209201440229976513439... . - _Vaclav Kotesovec_, Feb 17 2017 %e A238870 The a(10) = 4 such compositions are: %e A238870 : %e A238870 : 1: [ 1 2 1 2 1 2 1 ] (composition) %e A238870 : %e A238870 : o o o %e A238870 : ooooooo (rendering as composition) %e A238870 : %e A238870 : O O O %e A238870 : O O O O O O O (rendering as fountain of coins) %e A238870 : %e A238870 : %e A238870 : 2: [ 1 2 1 2 3 1 ] %e A238870 : %e A238870 : o %e A238870 : o oo %e A238870 : oooooo %e A238870 : %e A238870 : O %e A238870 : O O O %e A238870 : O O O O O O %e A238870 : %e A238870 : %e A238870 : 3: [ 1 2 3 1 2 1 ] %e A238870 : %e A238870 : o %e A238870 : oo o %e A238870 : oooooo %e A238870 : %e A238870 : O %e A238870 : O O O %e A238870 : O O O O O O %e A238870 : %e A238870 : %e A238870 : 4: [ 1 2 3 4 ] %e A238870 : %e A238870 : o %e A238870 : oo %e A238870 : ooo %e A238870 : oooo %e A238870 : %e A238870 : O %e A238870 : O O %e A238870 : O O O %e A238870 : O O O O %e A238870 : %p A238870 b:= proc(n, i) option remember; `if`(n=0, 1, add( %p A238870 `if`(i=j, 0, b(n-j, j)), j=1..min(n, i+1))) %p A238870 end: %p A238870 a:= n-> b(n, 0): %p A238870 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 11 2014 %t A238870 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, b[n-j, j]], {j, 1, Min[n, i+1]}]]; %t A238870 a[n_] := b[n, 0]; %t A238870 a /@ Range[0, 60] (* _Jean-François Alcover_, Nov 07 2020, after _Alois P. Heinz_ *) %o A238870 (Sage) # translation of the Maple program by _Alois P. Heinz_ %o A238870 @CachedFunction %o A238870 def F(n, i): %o A238870 if n == 0: return 1 %o A238870 return sum( (i!=j) * F(n-j, j) for j in [1..min(n,i+1)] ) # A238870 %o A238870 # return sum( F(n-j, j) for j in [1, min(n,i+1)] ) # A005169 %o A238870 def a(n): return F(n, 0) %o A238870 print([a(n) for n in [0..50]]) %o A238870 # _Joerg Arndt_, Mar 20 2014 %Y A238870 Cf. A005169 (fountains of coins), A001524 (weakly unimodal fountains of coins). %Y A238870 Cf. A186085 (1-dimensional sandpiles), A227310 (rough sandpiles). %Y A238870 Cf. A023361 (fountains of coins with all valleys at lowest level). %K A238870 nonn %O A238870 0,7 %A A238870 _Joerg Arndt_, Mar 09 2014