This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238872 #30 Jul 13 2021 04:06:46 %S A238872 1,1,1,3,2,3,3,4,3,6,4,3,5,6,4,9,5,3,7,7,5,9,6,6,8,9,5,9,8,6,10,6,5, %T A238872 15,8,9,10,7,7,12,10,3,11,15,7,15,8,6,13,12,9,12,9,9,14,12,7,15,12,6, %U A238872 15,13,6,21,12,12,13,6,11,15,15,9,14,12,8,24,10,9 %N A238872 Number of strongly unimodal compositions of n with absolute difference of successive parts = 1. %H A238872 Alois P. Heinz, <a href="/A238872/b238872.txt">Table of n, a(n) for n = 0..10000</a> %H A238872 Dandan Chen and Rong Chen, <a href="https://arxiv.org/abs/2107.04809">Generating Functions of the Hurwitz Class Numbers Associated with Certain Mock Theta Functions</a>, arXiv:2107.04809 [math.NT], 2021. %F A238872 a(2*n) = A130695(2*n) / 3 if n>0. a(2*n + 1) = A130695(2*n + 1) = 3 * H(8*n + 3), where H is the Hurwitz class number, if n>0. - _Michael Somos_, Jul 04 2015 %e A238872 The a(33) = 15 such compositions of 33 are: %e A238872 01: [ 1 2 3 4 5 6 5 4 3 ] %e A238872 02: [ 2 3 4 5 6 7 6 ] %e A238872 03: [ 3 4 5 6 5 4 3 2 1 ] %e A238872 04: [ 3 4 5 6 7 8 ] %e A238872 05: [ 4 5 6 7 6 5 ] %e A238872 06: [ 5 6 7 6 5 4 ] %e A238872 07: [ 5 6 7 8 7 ] %e A238872 08: [ 6 7 6 5 4 3 2 ] %e A238872 09: [ 7 8 7 6 5 ] %e A238872 10: [ 8 7 6 5 4 3 ] %e A238872 11: [ 10 11 12 ] %e A238872 12: [ 12 11 10 ] %e A238872 13: [ 16 17 ] %e A238872 14: [ 17 16 ] %e A238872 15: [ 33 ] %e A238872 G.f. = 1 + x + x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 3*x^8 + 6*x^9 + ... %t A238872 a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 1, 1/3] Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9]]; (* _Michael Somos_, Jul 04 2015 *) %t A238872 a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 + (x - x^2 + z - z^2) / 2 == n}, {x, y, z}, Integers, 10^9]]; (* _Michael Somos_, Jul 04 2015 *) %o A238872 (PARI) \\ generate the compositions %o A238872 a(n)= %o A238872 { %o A238872 if ( n==0, return(1) ); %o A238872 my( ret=0 ); %o A238872 my( as, ts ); %o A238872 for (f=1, n, \\ first part %o A238872 as = 0; %o A238872 for (p=f, n, \\ numper of parts in rising half %o A238872 as += p; \\ ascending sum %o A238872 if ( as > n, break() ); %o A238872 if ( as == n, ret+=1; break() ); %o A238872 ts = as; \\ total sum %o A238872 forstep (q=p-1, 1, -1, %o A238872 ts += q; \\ descending sum %o A238872 if ( ts > n, break() ); %o A238872 if ( ts == n, ret+=1; break() ); %o A238872 ); %o A238872 ); %o A238872 ); %o A238872 return( ret ); %o A238872 } %o A238872 v=vector(100,n,a(n-1)) %Y A238872 Cf. A001522, A001523, A005169, A034297, A059618, A238870, A238871, A130695. %K A238872 nonn %O A238872 0,4 %A A238872 _Joerg Arndt_, Mar 21 2014