This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238873 #25 Apr 14 2025 08:43:05 %S A238873 1,1,1,2,3,3,5,7,9,11,14,19,25,31,38,46,59,73,92,112,135,162,196,237, %T A238873 289,349,417,496,587,691,820,970,1151,1357,1598,1870,2183,2537,2952, %U A238873 3433,3997,4644,5393,6248,7220,8318,9566,10981,12605,14457,16582,19002,21767,24886,28424,32396,36873,41901,47579,53974,61221 %N A238873 Number of superdiagonal partitions: partitions (p1, p2, p3, ...) of n such that pi >= i. %H A238873 Alois P. Heinz, <a href="/A238873/b238873.txt">Table of n, a(n) for n = 0..1000</a> (first 132 terms from Joerg Arndt) %H A238873 M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, <a href="https://doi.org/10.1007/s13370-025-01282-0">Subdiagonal and superdiagonal partitions</a>, Afr. Mat. 36, 77 (2025). See p. 5. %e A238873 The a(13) = 31 such partitions of 13 are: %e A238873 01: [ 1 2 3 7 ] %e A238873 02: [ 1 2 4 6 ] %e A238873 03: [ 1 2 5 5 ] %e A238873 04: [ 1 2 10 ] %e A238873 05: [ 1 3 3 6 ] %e A238873 06: [ 1 3 4 5 ] %e A238873 07: [ 1 3 9 ] %e A238873 08: [ 1 4 4 4 ] %e A238873 09: [ 1 4 8 ] %e A238873 10: [ 1 5 7 ] %e A238873 11: [ 1 6 6 ] %e A238873 12: [ 1 12 ] %e A238873 13: [ 2 2 3 6 ] %e A238873 14: [ 2 2 4 5 ] %e A238873 15: [ 2 2 9 ] %e A238873 16: [ 2 3 3 5 ] %e A238873 17: [ 2 3 4 4 ] %e A238873 18: [ 2 3 8 ] %e A238873 19: [ 2 4 7 ] %e A238873 20: [ 2 5 6 ] %e A238873 21: [ 2 11 ] %e A238873 22: [ 3 3 3 4 ] %e A238873 23: [ 3 3 7 ] %e A238873 24: [ 3 4 6 ] %e A238873 25: [ 3 5 5 ] %e A238873 26: [ 3 10 ] %e A238873 27: [ 4 4 5 ] %e A238873 28: [ 4 9 ] %e A238873 29: [ 5 8 ] %e A238873 30: [ 6 7 ] %e A238873 31: [ 13 ] %Y A238873 Cf. A219282 (superdiagonal compositions), A238394 (strictly superdiagonal partitions), A025147 (strictly superdiagonal partitions into distinct parts). %Y A238873 Cf. A238875 (subdiagonal partitions), A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts). %Y A238873 Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth). %Y A238873 Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition). %K A238873 nonn %O A238873 0,4 %A A238873 _Joerg Arndt_, Mar 23 2014