This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238874 #26 Oct 05 2021 13:00:13 %S A238874 1,0,1,1,1,2,3,4,5,7,10,14,19,25,33,44,59,79,105,138,180,234,304,395, %T A238874 513,665,859,1105,1416,1809,2306,2935,3731,4737,6005,7598,9593,12085, %U A238874 15192,19061,23875,29861,37299,46532,57978,72145,89650,111243,137837,170545,210725,260034,320492,394557,485213,596074,731508 %N A238874 Strictly superdiagonal compositions: compositions (p1, p2, p3, ...) of n such that pi > i. %H A238874 Joerg Arndt and Alois P. Heinz, <a href="/A238874/b238874.txt">Table of n, a(n) for n = 0..1000</a> %F A238874 G.f.: Sum_{n>=0} q^(n*(n+3)/2) / (1-q)^n. - _Joerg Arndt_, Mar 30 2014 %e A238874 The a(13) = 25 such composition of 13 are: %e A238874 01: [ 2 3 8 ] %e A238874 02: [ 2 4 7 ] %e A238874 03: [ 2 5 6 ] %e A238874 04: [ 2 6 5 ] %e A238874 05: [ 2 7 4 ] %e A238874 06: [ 2 11 ] %e A238874 07: [ 3 3 7 ] %e A238874 08: [ 3 4 6 ] %e A238874 09: [ 3 5 5 ] %e A238874 10: [ 3 6 4 ] %e A238874 11: [ 3 10 ] %e A238874 12: [ 4 3 6 ] %e A238874 13: [ 4 4 5 ] %e A238874 14: [ 4 5 4 ] %e A238874 15: [ 4 9 ] %e A238874 16: [ 5 3 5 ] %e A238874 17: [ 5 4 4 ] %e A238874 18: [ 5 8 ] %e A238874 19: [ 6 3 4 ] %e A238874 20: [ 6 7 ] %e A238874 21: [ 7 6 ] %e A238874 22: [ 8 5 ] %e A238874 23: [ 9 4 ] %e A238874 24: [ 10 3 ] %e A238874 25: [ 13 ] %p A238874 b:= proc(n, i) option remember; `if`(n=0, 1, %p A238874 add(b(n-j, i+1), j=i..n)) %p A238874 end: %p A238874 a:= n-> b(n, 2): %p A238874 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 24 2014 %t A238874 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 2]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Mar 23 2015, after _Alois P. Heinz_ *) %o A238874 (PARI) N=66; q='q+O('q^N); %o A238874 gf=sum(n=0,N, q^(n*(n+3)/2) / (1-q)^n ); %o A238874 v=Vec(gf) \\ _Joerg Arndt_, Mar 30 2014 %Y A238874 Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A025147 (strictly superdiagonal partitions into distinct parts). %Y A238874 Cf. A238875 (subdiagonal partitions), A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts). %Y A238874 Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth). %Y A238874 Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition). %K A238874 nonn %O A238874 0,6 %A A238874 _Joerg Arndt_, Mar 23 2014