A238876 Partitions with subdiagonal growth: number of partitions (p0, p1, p2, ...) of n with pi - p0 <= i.
1, 1, 2, 3, 4, 6, 8, 10, 15, 20, 24, 34, 46, 58, 76, 97, 126, 166, 209, 262, 333, 422, 529, 667, 833, 1024, 1268, 1567, 1934, 2385, 2911, 3549, 4319, 5237, 6340, 7675, 9274, 11164, 13404, 16046, 19173, 22889, 27278, 32458, 38574, 45750, 54140, 63976, 75449, 88848, 104503, 122773, 144077, 168860, 197609, 230916, 269494
Offset: 0
Keywords
Examples
The a(9) = 20 such partitions are: 01: [ 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 1 2 ] 03: [ 1 1 1 1 1 1 3 ] 04: [ 1 1 1 1 1 2 2 ] 05: [ 1 1 1 1 1 4 ] 06: [ 1 1 1 1 2 3 ] 07: [ 1 1 1 1 5 ] 08: [ 1 1 1 2 2 2 ] 09: [ 1 1 1 2 4 ] 10: [ 1 1 1 3 3 ] 11: [ 1 1 2 2 3 ] 12: [ 1 1 3 4 ] 13: [ 1 2 2 2 2 ] 14: [ 1 2 2 4 ] 15: [ 1 2 3 3 ] 16: [ 2 2 2 3 ] 17: [ 2 3 4 ] 18: [ 3 3 3 ] 19: [ 4 5 ] 20: [ 9 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Crossrefs
Cf. A238859 (compositions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Comments