This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238879 #16 Mar 01 2020 07:46:47 %S A238879 1,1,2,5,5,21,14,84,42,330,132,1287,429,5005,1430,19448,4862,75582, %T A238879 16796,293930,58786,1144066,208012,4457400,742900,17383860,2674440, %U A238879 67863915,9694845,265182525,35357670,1037158320,129644790,4059928950,477638700,15905368710 %N A238879 Row sums of the triangle of generalized ballot numbers A238762. %F A238879 a(2n) = A000108(n), a(2n+1) = A002054(n) (conjectured). - _Ralf Stephan_, Mar 14 2014 %p A238879 A238879 := proc(n) option remember; %p A238879 if n < 2 then 1 else %p A238879 if n mod 2 = 0 then 1/(iquo(n,2)+2) %p A238879 else (2*n+4)/((n-1)*(n+5)) fi; %p A238879 % *(2*n+2)*A238879(n-2) %p A238879 fi end: %p A238879 seq(A238879(i), i = 0..30); %o A238879 (Sage) %o A238879 def f(): %o A238879 f, g, b, n = 1, 1, 1, 1 %o A238879 while True: %o A238879 n += 1 %o A238879 if b == 1: %o A238879 yield g %o A238879 g *= 2*(n+1)/(n//2+2) %o A238879 else: %o A238879 yield f %o A238879 f *= 4*(n+1)*(n+2)/((n-1)*(n+5)) %o A238879 b = 1 - b %o A238879 A238879 = f(); [next(A238879) for n in range(31)] %Y A238879 Cf. A000108, A002054, A238762, A323844. %K A238879 nonn %O A238879 0,3 %A A238879 _Peter Luschny_, Mar 06 2014