cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238879 Row sums of the triangle of generalized ballot numbers A238762.

This page as a plain text file.
%I A238879 #16 Mar 01 2020 07:46:47
%S A238879 1,1,2,5,5,21,14,84,42,330,132,1287,429,5005,1430,19448,4862,75582,
%T A238879 16796,293930,58786,1144066,208012,4457400,742900,17383860,2674440,
%U A238879 67863915,9694845,265182525,35357670,1037158320,129644790,4059928950,477638700,15905368710
%N A238879 Row sums of the triangle of generalized ballot numbers A238762.
%F A238879 a(2n) = A000108(n), a(2n+1) = A002054(n) (conjectured). - _Ralf Stephan_, Mar 14 2014
%p A238879 A238879 := proc(n) option remember;
%p A238879 if n < 2 then 1 else
%p A238879    if n mod 2 = 0 then 1/(iquo(n,2)+2)
%p A238879    else (2*n+4)/((n-1)*(n+5)) fi;
%p A238879    % *(2*n+2)*A238879(n-2)
%p A238879 fi end:
%p A238879 seq(A238879(i), i = 0..30);
%o A238879 (Sage)
%o A238879 def f():
%o A238879     f, g, b, n = 1, 1, 1, 1
%o A238879     while True:
%o A238879         n += 1
%o A238879         if b == 1:
%o A238879             yield g
%o A238879             g *= 2*(n+1)/(n//2+2)
%o A238879         else:
%o A238879             yield f
%o A238879             f *= 4*(n+1)*(n+2)/((n-1)*(n+5))
%o A238879         b = 1 - b
%o A238879 A238879 = f(); [next(A238879) for n in range(31)]
%Y A238879 Cf. A000108, A002054, A238762, A323844.
%K A238879 nonn
%O A238879 0,3
%A A238879 _Peter Luschny_, Mar 06 2014