A238882 Coefficients in a variant of Ramanujan's wrong identity for prime number partitions.
1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -2, 2, -1, 3, 1, 2, 1, -1, -4, 1, -4, -4, -10, -2, -8, -4, -5, -4, -1, 1, 2, 5, 6, 13, 12, 16, 18, 21, 25, 23, 30, 22, 23, 21, 21, 18, 14, 8, -1, -9, -20, -36, -36, -51, -61, -75, -80, -96, -103
Offset: 0
Keywords
Examples
GF = 1/((1-x^2)(1-x^3)(1-x^5)(1-x^7)(1-x^11)...) = 1+x^2+x^3+x^4+2*x^5+... (cf. A000607) => a(0)=1, b(0)=0, GF - 1 = x^2 + .... => a(1)=1, b(1)=2, GF - 1 - x^2/(1-x) = x^5 + ... => a(2)=1, b(2)=5, GF - 1 - x^2/(1-x) - x^5/(1-x)(1-x^2) = x^10 + ... => a(3)=1, b(3)=10, GF - ... - x^10/(1-x)(1-x^2)(1-x^3) = x^17 + ... => a(4)=1, b(4)=17, GF - ... - x^17/(1-x)(1-x^2)(1-x^3)(1-x^4) = -x^21+... => a(5)=-1, b(5)=21, GF - ... + x^21/... etc.
Programs
-
PARI
p=1/prod(k=1,25,1-x^prime(k),1+O(x^999))/* Note: p1+...+p25 > 1000 */; for(k=0,99, print1(polcoeff(p,c=valuation(p,x)),",");p-=polcoeff(p,c)*x^c/prod(j=1,k,1-x^j,O(x^199)+1))
Extensions
Example section corrected by Vaclav Kotesovec, Sep 12 2019
Comments