A238884 Number of upper triangular partitions of n.
1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 9, 9, 8, 10, 10, 12, 12, 13, 14, 14, 15, 15, 18, 20, 19, 20, 20, 21, 23, 23, 26, 27, 25, 26, 28, 30
Offset: 1
Examples
First 12 rows of the array at A238883: 1 2 3 4 .. 1 4 .. 3 8 .. 1 .. 2 10 . 3 .. 2 14 . 5 .. 2 .. 1 20 . 3 .. 4 .. 2 .. 1 30 . 3 .. 2 .. 1 .. 6 36 . 13 . 2 .. 3 .. 2 52 . 10 . 4 .. 6 .. 3 .. 2 Row 6 arises as follows: there are 3 upper triangular (UT) partitions: 51, 33, 321, of which 51 is produced from these 8 partitions: 6, 51, 42, 411, 3111, 2211, 21111, 111111; while the UT partition 33 is produced from the single partition 321, and the only other UT partition of 6, namely 321, is produced from the partitions 33 and 222. (For example, the rows of the Ferrers matrix of 222 are (1,1,0), (1,1,0), (1,1,0), with principal antidiagonal (0,1,1), so that u = 3, v = 2, w = 1.) Since all the partitions of 6 have been used, there can be no other UT partition of 6 than 51, 33, 321. Therefore, a(6) = 3.
Programs
-
Mathematica
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; ut[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[Reverse[ferrersMatrix[list]]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[ Tally[Map[Reverse[Sort[#]] &, Map[ut, IntegerPartitions[n]]]]] u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]] z = 20; Table[Flatten[u[n]], {n, 1, z}] Flatten[Table[u[n], {n, 1, z}]] Table[v[n], {n, 1, z}] Flatten[Table[v[n], {n, 1, z}]] (* A238883 *) Table[Length[v[n]], {n, 1, z}] (* A238884 *) (* Peter J. C. Moses, Mar 04 2014 *)
Comments