cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238886 Number of lower triangular partitions of n.

This page as a plain text file.
%I A238886 #6 Mar 14 2014 00:06:23
%S A238886 1,1,2,2,3,4,5,6,8,9,11,12,14,15,17,19,21,23,25,27,29,31,33,35,38,40,
%T A238886 43,45,48,50,53,55,58,60,63,66,69,72,75,78
%N A238886 Number of lower triangular partitions of n.
%C A238886 Suppose that p is a partition.  Let u, v, w be the number of 1's above, on, and below the principal diagonal, respectively, of the Ferrers matrix of p defined at A237981.  The lower triangular partition of p, denoted by L(p), is {u,v} if w = 0 and {u,v,w} otherwise.  In row n, the counted partitions are taken in Mathematica order (i.e., reverse lexicographic).  a(n) = number of numbers in row n of the array at A238885.
%e A238886 First 12 rows of A238885:
%e A238886 1
%e A238886 2
%e A238886 2 .. 1
%e A238886 2 .. 3
%e A238886 2 .. 2 .. 3
%e A238886 2 .. 2 .. 6 .. 1
%e A238886 2 .. 2 .. 6 .. 1 .. 4
%e A238886 2 .. 2 .. 8 .. 2 .. 4 .. 4
%e A238886 2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1
%e A238886 2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2
%e A238886 2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1
%e A238886 2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4
%e A238886 Row 4 arises as follows:  there are 3 lower triangular (LT) partitions:  41, 311, 221, of which 41 is produced from these 2 partitions: 5 and 11111; while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3.  (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.)  Since all the partitions of 5 have been used, there can be no other LT partition of 5 than 41, 311, 221.  Therefore, a(5) = 3.
%t A238886 ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
%t A238886 z = 10; Table[Flatten[u[n]], {n, 1, z}]
%t A238886 Flatten[Table[u[n], {n, 1, z}]]
%t A238886 Table[v[n], {n, 1, z}]
%t A238886 Flatten[Table[v[n], {n, 1, z}]]  (* A238885 *)
%t A238886 Table[Length[v[n]], {n, 1, z}]  (* A238886 *)
%t A238886 (* _Peter J. C. Moses_, Mar 04 2014 *)
%Y A238886 Cf. A238883, A238885, A237981, A000041.
%K A238886 nonn,easy
%O A238886 1,3
%A A238886 _Clark Kimberling_, Mar 06 2014