cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238890 a(n) = |{0 < k <= n: prime(k*n) - pi(k*n) is prime}|, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 6, 1, 1, 4, 4, 1, 5, 3, 5, 5, 4, 5, 1, 2, 5, 7, 6, 5, 2, 2, 4, 4, 4, 10, 6, 5, 5, 4, 6, 8, 7, 5, 8, 5, 8, 5, 3, 5, 9, 6, 7, 2, 2, 4, 6, 7, 8, 11, 8, 8, 10, 6, 8, 10, 2, 5, 11, 7, 5, 10, 10, 8, 7, 9, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 06 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 for no n > 28.
(ii) If n > 7 is not equal to 34, then prime(k*n) + pi(k*n) is prime for some k = 1, ..., n.
The conjecture implies that there are infinitely many primes p with p - pi(pi(p)) (or p + pi(pi(p))) prime.

Examples

			a(5) = 1 since prime(3*5) - pi(3*5) = 47 - 6 = 41 is prime.
a(28) = 1 since prime(18*28) - pi(18*28) = prime(504) - pi(504) = 3607 - 96 = 3511 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_]:=PrimeQ[Prime[k]-PrimePi[k]]
    a[n_]:=Sum[If[p[k*n],1,0],{k,1,n}]
    Table[a[n],{n,1,80}]