A238890 a(n) = |{0 < k <= n: prime(k*n) - pi(k*n) is prime}|, where pi(x) denotes the number of primes not exceeding x.
1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 6, 1, 1, 4, 4, 1, 5, 3, 5, 5, 4, 5, 1, 2, 5, 7, 6, 5, 2, 2, 4, 4, 4, 10, 6, 5, 5, 4, 6, 8, 7, 5, 8, 5, 8, 5, 3, 5, 9, 6, 7, 2, 2, 4, 6, 7, 8, 11, 8, 8, 10, 6, 8, 10, 2, 5, 11, 7, 5, 10, 10, 8, 7, 9, 8
Offset: 1
Keywords
Examples
a(5) = 1 since prime(3*5) - pi(3*5) = 47 - 6 = 41 is prime. a(28) = 1 since prime(18*28) - pi(18*28) = prime(504) - pi(504) = 3607 - 96 = 3511 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..3000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[k_]:=PrimeQ[Prime[k]-PrimePi[k]] a[n_]:=Sum[If[p[k*n],1,0],{k,1,n}] Table[a[n],{n,1,80}]
Comments