This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238905 #15 Aug 22 2023 11:58:57 %S A238905 6,15,22,33,39,57,69,111,129,141,183,201,214,219,237,309,453,471,489, %T A238905 573,579,633,669,813,831,849,939,993,1101,1149,1191,1263,1371,1389, %U A238905 1461,1519,1569,1623,1641,1821,1839,1893,1942,1983,2019,2073,2199,2253,2271 %N A238905 The tau(sigma)-perfect numbers, where the set of f-perfect numbers for an arithmetical function f is defined in A066218. %H A238905 Amiram Eldar, <a href="/A238905/b238905.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Paolo P. Lava) %e A238905 Aliquot divisors of 39 are 1, 3, 13. Then tau(sigma(1)) + tau(sigma(3)) + tau(sigma(13)) = 1 + 3 + 4 = 8 and tau(sigma(39)) = 8. %p A238905 with(numtheory); P:=proc(q) local a,b,i,n; %p A238905 for n from 1 to q do a:=divisors(n); b:=0; %p A238905 for i from 1 to nops(a)-1 do b:=b+tau(sigma(a[i])); od; %p A238905 if tau(sigma(n))=b then print(n); fi; od; end: P(10^6); %t A238905 q[n_] := DivisorSum[n, DivisorSigma[0, DivisorSigma[1, #]] &, # < n &] == DivisorSigma[0, DivisorSigma[1, n]]; Select[Range[2300], q] (* _Amiram Eldar_, Aug 22 2023 *) %o A238905 (PARI) isok(n) = numdiv(sigma(n)) == sumdiv(n, d, (d<n)*numdiv(sigma(d))); \\ _Michel Marcus_, Mar 08 2014 %Y A238905 Cf. A000005, A000230, A066218. %K A238905 nonn,easy %O A238905 1,1 %A A238905 _Paolo P. Lava_, Mar 07 2014