cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238941 Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A238941 #10 Mar 14 2017 11:13:02
%S A238941 1,1,1,2,3,1,5,8,4,1,13,21,13,6,1,34,55,40,25,7,1,89,144,120,90,33,9,
%T A238941 1,233,377,354,300,132,51,10,1,610,987,1031,954,483,234,62,12,1,1597,
%U A238941 2584,2972,2939,1671,951,308,86,13,1,4181,6765,8495,8850,5561,3573,1345,480,100,15,1
%N A238941 Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C A238941 Row sums are A025192(n).
%H A238941 Indranil Ghosh, <a href="/A238941/b238941.txt">Rows 0..100, flattened</a>
%F A238941 G.f. for the column k: x^k*(1-2*x)^A059841(k)/(1-3*x+x^2)^A008619(k).
%F A238941 G.f.: (1-2*x+x*y)/(1-3*x+x^2-x^2*y^2).
%F A238941 T(n,k) = 3*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
%F A238941 Sum_{k = 0..n} T(n,k)*x^k = A000007(n), A001519(n), A025192(n), A030195(n+1) for x = -1, 0, 1, 2 respectively.
%F A238941 Sum_{k = 0..n} T(n,k)*3^k = A015525(n) + A015525(n+1).
%e A238941 Triangle begins:
%e A238941 1;
%e A238941 1, 1;
%e A238941 2, 3, 1;
%e A238941 5, 8, 4, 1;
%e A238941 13, 21, 13, 6, 1;
%e A238941 34, 55, 40, 25, 7, 1;
%e A238941 89, 144, 120, 90, 33, 9, 1;
%e A238941 233, 377, 354, 300, 132, 51, 10, 1;
%t A238941 nmax=10; Column[CoefficientList[Series[CoefficientList[Series[(1 - 2*x + x*y)/(1 - 3*x + x^2 - x^2*y^2), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* _Indranil Ghosh_, Mar 14 2017 *)
%Y A238941 Cf. Columns: A001519, A001906, A238846, A001871.
%Y A238941 Cf. Diagonals: A000012, A032766.
%K A238941 nonn,tabl
%O A238941 0,4
%A A238941 _Philippe Deléham_, Mar 07 2014
%E A238941 Data section corrected and extended by _Indranil Ghosh_, Mar 14 2017