This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238946 #27 Mar 28 2020 20:00:31 %S A238946 0,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,3,1,3,2,2,1,3,1,2,1,3,1,6,1,1,2,2, %T A238946 2,4,1,2,2,3,1,6,1,3,3,2,1,3,1,3,2,3,1,3,2,3,2,2,1,7,1,2,3,1,2,6,1,3, %U A238946 2,6,1,5,1,2,3,3,2,6,1,3,1,2 %N A238946 Maximal level size of arcs in divisor lattice D(n). %C A238946 A divisor d of n has level given by bigomega(d) and in-degree given by omega(d). The number of arcs on a level is the sum of the in-degrees of all divisors on the level. - _Andrew Howroyd_, Mar 28 2020 %H A238946 Andrew Howroyd, <a href="/A238946/b238946.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..200 from Sung-Hyuk Cha) %H A238946 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014. %o A238946 (PARI) a(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))} \\ _Andrew Howroyd_, Mar 28 2020 %Y A238946 Cf. A001221 (omega), A001222 (bigomega), A062799, A096825, A238955, A238968. %K A238946 nonn %O A238946 1,6 %A A238946 _Sung-Hyuk Cha_, Mar 07 2014 %E A238946 a(1) corrected by _Andrew Howroyd_, Mar 28 2020