cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238952 The size (the number of arcs) in the transitive closure of divisor lattice D(n).

This page as a plain text file.
%I A238952 #44 May 02 2025 23:36:42
%S A238952 0,1,1,3,1,5,1,6,3,5,1,12,1,5,5,10,1,12,1,12,5,5,1,22,3,5,6,12,1,19,1,
%T A238952 15,5,5,5,27,1,5,5,22,1,19,1,12,12,5,1,35,3,12,5,12,1,22,5,22,5,5,1,
%U A238952 42,1,5,12,21,5,19,1,12,5,19,1,48,1,5,12,12,5
%N A238952 The size (the number of arcs) in the transitive closure of divisor lattice D(n).
%C A238952 a(n) is the number of ordered factorizations of n = r*s*t such that t is not equal to 1. For example: a(4)=3 because we have: 1*1*4, 1*2*2, and 2*1*2. Cf. A007425. - _Geoffrey Critzer_, Jan 01 2015
%C A238952 Number of pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, d1|d2 and d1 + d2 <= n. For example, a(8) has 6 divisor pairs (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). - _Wesley Ivan Hurt_, May 01 2021
%H A238952 Antti Karttunen, <a href="/A238952/b238952.txt">Table of n, a(n) for n = 1..65537</a>
%H A238952 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014 (see 13th line in Table 1).
%F A238952 Conjecture: a(n) = Sum_{i=1..floor(n/2)} d(i) * (floor(n/i) - floor((n-1)/i)), where d(n) is the number of divisors of n. - _Wesley Ivan Hurt_, Dec 21 2017
%F A238952 a(n) = Sum_{d|n, d<n} A000005(d). - _Antti Karttunen_, Mar 08 2018, after _Geoffrey Critzer_'s Mathematica-code.
%F A238952 G.f.: Sum_{k>=1} (d(k) - 1)*x^k/(1 - x^k), where d(k) = number of divisors of k (A000005). - _Ilya Gutkovskiy_, Sep 11 2018
%F A238952 a(n) = A007425(n) - A000005(n). - _Ridouane Oudra_, Apr 26 2025
%p A238952 with(numtheory): seq(add(tau(d), d in divisors(n) minus {n}), n=1..80); # _Ridouane Oudra_, Apr 26 2025
%t A238952 Table[Map[DivisorSigma[0, #] &, Drop[Divisors[n], -1]] // Total, {n, 1, 77}] (* _Geoffrey Critzer_, Jan 01 2015 *)
%o A238952 (PARI) A238952(n) = sumdiv(n, d, (d<n)*numdiv(d)); \\ _Antti Karttunen_, Mar 07 2018, after _Geoffrey Critzer_'s Mathematica-code.
%Y A238952 Cf. A000005, A007425, A062799.
%K A238952 nonn
%O A238952 1,4
%A A238952 _Sung-Hyuk Cha_, Mar 07 2014