cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238953 The size of divisor lattice D(n) in graded (reflected or not) colexicographic order of exponents.

This page as a plain text file.
%I A238953 #21 Apr 25 2020 18:12:40
%S A238953 0,1,2,4,3,7,12,4,10,12,20,32,5,13,17,28,33,52,80,6,16,22,24,36,46,54,
%T A238953 72,84,128,192,7,19,27,31,44,59,64,75,92,116,135,176,204,304,448,8,22,
%U A238953 32,38,40,52,72,82,96,104,112,148,160,186,216,224,280,324,416,480,704,1024
%N A238953 The size of divisor lattice D(n) in graded (reflected or not) colexicographic order of exponents.
%H A238953 Andrew Howroyd, <a href="/A238953/b238953.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238953 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238953 T(n,k) = A062799(A036035(n,k)).
%e A238953 Triangle T(n,k) begins:
%e A238953   0;
%e A238953   1;
%e A238953   2,  4;
%e A238953   3,  7, 12;
%e A238953   4, 10, 12, 20, 32;
%e A238953   5, 13, 17, 28, 33, 52, 80;
%e A238953   6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192;
%e A238953   ...
%o A238953 (PARI) \\ here b(n) is A062799.
%o A238953 b(n)={sumdiv(n, d, omega(d))}
%o A238953 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238953 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
%o A238953 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Apr 25 2020
%Y A238953 Cf. A062799 in graded colexicographic order.
%Y A238953 Cf. A036035, A238964.
%K A238953 nonn,tabf
%O A238953 0,3
%A A238953 _Sung-Hyuk Cha_, Mar 07 2014
%E A238953 Offset changed and terms a(64) and beyond from _Andrew Howroyd_, Apr 25 2020