This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238953 #21 Apr 25 2020 18:12:40 %S A238953 0,1,2,4,3,7,12,4,10,12,20,32,5,13,17,28,33,52,80,6,16,22,24,36,46,54, %T A238953 72,84,128,192,7,19,27,31,44,59,64,75,92,116,135,176,204,304,448,8,22, %U A238953 32,38,40,52,72,82,96,104,112,148,160,186,216,224,280,324,416,480,704,1024 %N A238953 The size of divisor lattice D(n) in graded (reflected or not) colexicographic order of exponents. %H A238953 Andrew Howroyd, <a href="/A238953/b238953.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238953 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238953 T(n,k) = A062799(A036035(n,k)). %e A238953 Triangle T(n,k) begins: %e A238953 0; %e A238953 1; %e A238953 2, 4; %e A238953 3, 7, 12; %e A238953 4, 10, 12, 20, 32; %e A238953 5, 13, 17, 28, 33, 52, 80; %e A238953 6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192; %e A238953 ... %o A238953 (PARI) \\ here b(n) is A062799. %o A238953 b(n)={sumdiv(n, d, omega(d))} %o A238953 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238953 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} %o A238953 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Apr 25 2020 %Y A238953 Cf. A062799 in graded colexicographic order. %Y A238953 Cf. A036035, A238964. %K A238953 nonn,tabf %O A238953 0,3 %A A238953 _Sung-Hyuk Cha_, Mar 07 2014 %E A238953 Offset changed and terms a(64) and beyond from _Andrew Howroyd_, Apr 25 2020