This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238955 #18 Apr 26 2020 17:46:17 %S A238955 0,1,1,2,1,3,6,1,3,4,7,12,1,3,5,8,11,18,30,1,3,5,6,8,12,15,19,24,38, %T A238955 60,1,3,5,7,8,13,16,19,20,30,37,46,58,90,140,1,3,5,7,8,8,13,17,20,23, %U A238955 20,31,36,43,52,47,66,80,100,122,185,280 %N A238955 Maximal level size of arcs in divisor lattice in graded colexicographic order. %H A238955 Andrew Howroyd, <a href="/A238955/b238955.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238955 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238955 T(n,k) = A238946(A036035(n,k)). %e A238955 Triangle T(n,k) begins: %e A238955 0; %e A238955 1; %e A238955 1, 2; %e A238955 1, 3, ; %e A238955 1, 3, 4, 7, 12; %e A238955 1, 3, 5, 8, 11, 18, 30; %e A238955 1, 3, 5, 6, 8, 12, 15, 19, 24, 38, 60; %e A238955 ... %o A238955 (PARI) \\ here b(n) is A238946. %o A238955 b(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))} %o A238955 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238955 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} %o A238955 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Apr 25 2020 %Y A238955 Cf. A238946 in graded colexicographic order. %Y A238955 Cf. A036035, A238968. %K A238955 nonn,tabf %O A238955 0,4 %A A238955 _Sung-Hyuk Cha_, Mar 07 2014 %E A238955 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 25 2020