cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238956 Degree of divisor lattice in graded colexicographic order.

This page as a plain text file.
%I A238956 #13 Apr 01 2020 20:13:36
%S A238956 0,1,2,2,2,3,3,2,3,4,4,4,2,3,4,4,5,5,5,2,3,4,4,4,5,6,5,6,6,6,2,3,4,4,
%T A238956 4,5,5,6,5,6,7,6,7,7,7,2,3,4,4,4,4,5,5,6,6,5,6,6,7,8,6,7,8,7,8,8,8,2,
%U A238956 3,4,4,4,4,5,5,5,6,6,6,5,6,6,7,7,8,6,7,7,8,9,7,8,9,8,9,9,9
%N A238956 Degree of divisor lattice  in graded colexicographic order.
%H A238956 Andrew Howroyd, <a href="/A238956/b238956.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238956 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238956 T(n,k) = A238949(A036035(n,k)).
%e A238956 Triangle T(n,k) begins:
%e A238956   0;
%e A238956   1;
%e A238956   2, 2;
%e A238956   2, 3, 3;
%e A238956   2, 3, 4, 4, 4;
%e A238956   2, 3, 4, 4, 5, 5, 5;
%e A238956   2, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6;
%e A238956   ...
%o A238956 (PARI)
%o A238956 C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
%o A238956 Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
%o A238956 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Apr 01 2020
%Y A238956 Cf. A238949 in graded colexicographic order.
%Y A238956 Cf. A036035, A238969.
%K A238956 nonn,tabf
%O A238956 0,3
%A A238956 _Sung-Hyuk Cha_, Mar 07 2014
%E A238956 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 01 2020