cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238957 The number of nodes at even level in divisor lattice in graded colexicographic order.

This page as a plain text file.
%I A238957 #18 Apr 01 2020 20:14:30
%S A238957 1,1,2,2,2,3,4,3,4,5,6,8,3,5,6,8,9,12,16,4,6,8,8,10,12,14,16,18,24,32,
%T A238957 4,7,9,10,12,15,16,18,20,24,27,32,36,48,64,5,8,11,12,13,14,18,20,23,
%U A238957 24,24,30,32,36,41,40,48,54,64,72,96,128
%N A238957 The number of nodes at even level in divisor lattice in graded colexicographic order.
%H A238957 Andrew Howroyd, <a href="/A238957/b238957.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238957 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238957 T(n,k) = A038548(A036035(n,k)).
%F A238957 From _Andrew Howroyd_, Apr 01 2020: (Start)
%F A238957 T(n,k) = A074139(n,k) - A238958(n,k).
%F A238957 T(n,k) = ceiling(A074139(n,k)/2). (End)
%e A238957 Triangle T(n,k) begins:
%e A238957   1;
%e A238957   1;
%e A238957   2, 2;
%e A238957   2, 3, 4;
%e A238957   3, 4, 5, 6,  8;
%e A238957   3, 5, 6, 8,  9, 12, 16;
%e A238957   4, 6, 8, 8, 10, 12, 14, 16, 18, 24, 32;
%e A238957   ...
%o A238957 (PARI) \\ here b(n) is A038548.
%o A238957 b(n)={ceil(numdiv(n)/2)}
%o A238957 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238957 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
%o A238957 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Apr 01 2020
%Y A238957 Cf. A038548 in graded colexicographic order.
%Y A238957 Cf. A036035, A074139, A238958, A238970.
%K A238957 nonn,tabf
%O A238957 0,3
%A A238957 _Sung-Hyuk Cha_, Mar 07 2014
%E A238957 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 01 2020