This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238957 #18 Apr 01 2020 20:14:30 %S A238957 1,1,2,2,2,3,4,3,4,5,6,8,3,5,6,8,9,12,16,4,6,8,8,10,12,14,16,18,24,32, %T A238957 4,7,9,10,12,15,16,18,20,24,27,32,36,48,64,5,8,11,12,13,14,18,20,23, %U A238957 24,24,30,32,36,41,40,48,54,64,72,96,128 %N A238957 The number of nodes at even level in divisor lattice in graded colexicographic order. %H A238957 Andrew Howroyd, <a href="/A238957/b238957.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238957 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238957 T(n,k) = A038548(A036035(n,k)). %F A238957 From _Andrew Howroyd_, Apr 01 2020: (Start) %F A238957 T(n,k) = A074139(n,k) - A238958(n,k). %F A238957 T(n,k) = ceiling(A074139(n,k)/2). (End) %e A238957 Triangle T(n,k) begins: %e A238957 1; %e A238957 1; %e A238957 2, 2; %e A238957 2, 3, 4; %e A238957 3, 4, 5, 6, 8; %e A238957 3, 5, 6, 8, 9, 12, 16; %e A238957 4, 6, 8, 8, 10, 12, 14, 16, 18, 24, 32; %e A238957 ... %o A238957 (PARI) \\ here b(n) is A038548. %o A238957 b(n)={ceil(numdiv(n)/2)} %o A238957 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238957 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} %o A238957 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Apr 01 2020 %Y A238957 Cf. A038548 in graded colexicographic order. %Y A238957 Cf. A036035, A074139, A238958, A238970. %K A238957 nonn,tabf %O A238957 0,3 %A A238957 _Sung-Hyuk Cha_, Mar 07 2014 %E A238957 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 01 2020