This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238961 #18 Apr 25 2020 18:19:24 %S A238961 0,1,3,5,6,12,19,10,22,27,42,65,15,35,48,74,90,138,211,21,51,75,84, %T A238961 115,156,189,238,288,438,665,28,70,108,130,165,240,268,324,365,492, %U A238961 594,746,900,1362,2059,36,92,147,186,200,224,342,410,495,552,519,750,836,1008,1215,1135,1524,1836,2302,2772,4182,6305 %N A238961 The size (the number of arcs) in the transitive closure of divisor lattice in graded colexicographic order. %H A238961 Andrew Howroyd, <a href="/A238961/b238961.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238961 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014, Table A.1 entry |E^T(s)|. %F A238961 T(n,k) = A238952(A036035(n,k)). %e A238961 Triangle T(n,k) begins: %e A238961 0; %e A238961 1; %e A238961 3, 5; %e A238961 6, 12, 19; %e A238961 10, 22, 27, 42, 65; %e A238961 15, 35, 48, 74, 90, 138, 211; %e A238961 21, 51, 75, 84, 115, 156, 189, 238, 288, 438, 665; %e A238961 ... %o A238961 (PARI) \\ here b(n) is A238952. %o A238961 b(n) = {sumdivmult(n, d, numdiv(d)) - numdiv(n)} %o A238961 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238961 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} %o A238961 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Apr 25 2020 %Y A238961 Cf. A238952 in graded colexicographic order. %Y A238961 Cf. A036035, A238974. %K A238961 nonn,tabf %O A238961 0,3 %A A238961 _Sung-Hyuk Cha_, Mar 07 2014 %E A238961 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 25 2020