cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238961 The size (the number of arcs) in the transitive closure of divisor lattice in graded colexicographic order.

This page as a plain text file.
%I A238961 #18 Apr 25 2020 18:19:24
%S A238961 0,1,3,5,6,12,19,10,22,27,42,65,15,35,48,74,90,138,211,21,51,75,84,
%T A238961 115,156,189,238,288,438,665,28,70,108,130,165,240,268,324,365,492,
%U A238961 594,746,900,1362,2059,36,92,147,186,200,224,342,410,495,552,519,750,836,1008,1215,1135,1524,1836,2302,2772,4182,6305
%N A238961 The size (the number of arcs) in the transitive closure of divisor lattice in graded colexicographic order.
%H A238961 Andrew Howroyd, <a href="/A238961/b238961.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238961 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014, Table A.1 entry |E^T(s)|.
%F A238961 T(n,k) = A238952(A036035(n,k)).
%e A238961 Triangle T(n,k) begins:
%e A238961    0;
%e A238961    1;
%e A238961    3,  5;
%e A238961    6, 12, 19;
%e A238961   10, 22, 27, 42,  65;
%e A238961   15, 35, 48, 74,  90, 138, 211;
%e A238961   21, 51, 75, 84, 115, 156, 189, 238, 288, 438, 665;
%e A238961   ...
%o A238961 (PARI) \\ here b(n) is A238952.
%o A238961 b(n) = {sumdivmult(n, d, numdiv(d)) - numdiv(n)}
%o A238961 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238961 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
%o A238961 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Apr 25 2020
%Y A238961 Cf. A238952 in graded colexicographic order.
%Y A238961 Cf. A036035, A238974.
%K A238961 nonn,tabf
%O A238961 0,3
%A A238961 _Sung-Hyuk Cha_, Mar 07 2014
%E A238961 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Apr 25 2020