cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238962 Number of perfect partitions in graded colexicographic order.

This page as a plain text file.
%I A238962 #18 Aug 30 2020 20:18:10
%S A238962 1,1,2,3,4,8,13,8,20,26,44,75,16,48,76,132,176,308,541,32,112,208,252,
%T A238962 368,604,818,1076,1460,2612,4683,64,256,544,768,976,1888,2316,3172,
%U A238962 3408,5740,7880,10404,14300,25988,47293,128,576,1376,2208,2568,2496,5536,7968
%N A238962 Number of perfect partitions in graded colexicographic order.
%H A238962 Andrew Howroyd, <a href="/A238962/b238962.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238962 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014, Table A.1 entry |P^T(s)|.
%F A238962 T(n,k) = A074206(A036035(n,k)). - _Andrew Howroyd_, Apr 25 2020
%e A238962 Triangle T(n,k) begins:
%e A238962    1;
%e A238962    1;
%e A238962    2,   3;
%e A238962    4,   8,  13;
%e A238962    8,  20,  26,  44,  75;
%e A238962   16,  48,  76, 132, 176, 308, 541;
%e A238962   32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683;
%e A238962   ...
%o A238962 (PARI) \\ here b(n) is A074206.
%o A238962 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238962 b(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))}
%o A238962 Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
%o A238962 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Aug 30 2020
%Y A238962 Row sums are A035341.
%Y A238962 Cf. A002033 in graded colexicographic order.
%Y A238962 Cf. A036035, A074206, A238975.
%K A238962 nonn,tabf
%O A238962 0,3
%A A238962 _Sung-Hyuk Cha_, Mar 07 2014
%E A238962 Offset changed and terms a(44) and beyond from _Andrew Howroyd_, Apr 25 2020