cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238966 The number of distinct primes in divisor lattice in canonical order.

This page as a plain text file.
%I A238966 #32 Sep 22 2023 08:43:53
%S A238966 0,1,1,2,1,2,3,1,2,2,3,4,1,2,2,3,3,4,5,1,2,2,3,2,3,4,3,4,5,6,1,2,2,3,
%T A238966 2,3,4,3,3,4,5,4,5,6,7,1,2,2,3,2,3,4,2,3,3,4,5,3,4,4,5,6,4,5,6,7,8,1,
%U A238966 2,2,3,2,3,4,2,3,3,4,5,3,3,4,4,5,6,3,4,5,4,5,6,7,5,6,7,8,9
%N A238966 The number of distinct primes in divisor lattice in canonical order.
%C A238966 After a(0) = 0, this appears to be the same as A128628. - _Gus Wiseman_, May 24 2020
%C A238966 Also the number of parts in the n-th integer partition in graded reverse-lexicographic order (A080577). - _Gus Wiseman_, May 24 2020
%H A238966 Andrew Howroyd, <a href="/A238966/b238966.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238966 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014.
%H A238966 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a>
%H A238966 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%F A238966 T(n,k) = A001221(A063008(n,k)). - _Andrew Howroyd_, Mar 25 2020
%F A238966 a(n) = A001222(A129129(n)). - _Gus Wiseman_, May 24 2020
%e A238966 Triangle T(n,k) begins:
%e A238966   0;
%e A238966   1;
%e A238966   1, 2;
%e A238966   1, 2, 3;
%e A238966   1, 2, 2, 3, 4;
%e A238966   1, 2, 2, 3, 3, 4, 5;
%e A238966   1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6;
%e A238966   ...
%p A238966 o:= proc(n) option remember; nops(ifactors(n)[2]) end:
%p A238966 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p A238966     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p A238966 T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
%p A238966 seq(T(n), n=0..9);  # _Alois P. Heinz_, Mar 26 2020
%t A238966 revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
%t A238966 Table[Length/@Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* _Gus Wiseman_, May 24 2020 *)
%t A238966 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
%t A238966 P[n_] := P[n] = Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
%t A238966 T[n_, k_] := PrimeNu[P[n][[k + 1]]];
%t A238966 Table[T[n, k], {n, 0, 9}, {k, 0, Length[P[n]] - 1}] // Flatten (* _Jean-François Alcover_, Jan 03 2022, after _Alois P. Heinz_ in A063008 *)
%o A238966 (PARI)
%o A238966 Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o A238966 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020
%Y A238966 Row sums are A006128.
%Y A238966 Cf. A036043 in canonical order.
%Y A238966 Cf. A001221, A063008.
%Y A238966 Row lengths are A000041.
%Y A238966 The generalization to compositions is A000120.
%Y A238966 The sum of the partition is A036042.
%Y A238966 The lexicographic version (sum/lex) is A049085.
%Y A238966 Partition lengths of A080577.
%Y A238966 The partition has A115623 distinct elements.
%Y A238966 The Heinz number of the partition is A129129.
%Y A238966 The colexicographic version (sum/colex) is A193173.
%Y A238966 The maximum of the partition is A331581.
%Y A238966 Partitions in lexicographic order (sum/lex) are A193073.
%Y A238966 Partitions in colexicographic order (sum/colex) are A211992.
%Y A238966 Cf. A026792, A036036, A080576, A103921, A112798, A182715, A333486, A334302, A334435, A334436, A334442.
%K A238966 nonn,tabf
%O A238966 0,4
%A A238966 _Sung-Hyuk Cha_, Mar 07 2014
%E A238966 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020