This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238966 #32 Sep 22 2023 08:43:53 %S A238966 0,1,1,2,1,2,3,1,2,2,3,4,1,2,2,3,3,4,5,1,2,2,3,2,3,4,3,4,5,6,1,2,2,3, %T A238966 2,3,4,3,3,4,5,4,5,6,7,1,2,2,3,2,3,4,2,3,3,4,5,3,4,4,5,6,4,5,6,7,8,1, %U A238966 2,2,3,2,3,4,2,3,3,4,5,3,3,4,4,5,6,3,4,5,4,5,6,7,5,6,7,8,9 %N A238966 The number of distinct primes in divisor lattice in canonical order. %C A238966 After a(0) = 0, this appears to be the same as A128628. - _Gus Wiseman_, May 24 2020 %C A238966 Also the number of parts in the n-th integer partition in graded reverse-lexicographic order (A080577). - _Gus Wiseman_, May 24 2020 %H A238966 Andrew Howroyd, <a href="/A238966/b238966.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238966 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014. %H A238966 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A238966 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A238966 T(n,k) = A001221(A063008(n,k)). - _Andrew Howroyd_, Mar 25 2020 %F A238966 a(n) = A001222(A129129(n)). - _Gus Wiseman_, May 24 2020 %e A238966 Triangle T(n,k) begins: %e A238966 0; %e A238966 1; %e A238966 1, 2; %e A238966 1, 2, 3; %e A238966 1, 2, 2, 3, 4; %e A238966 1, 2, 2, 3, 3, 4, 5; %e A238966 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6; %e A238966 ... %p A238966 o:= proc(n) option remember; nops(ifactors(n)[2]) end: %p A238966 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> %p A238966 [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): %p A238966 T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]: %p A238966 seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 26 2020 %t A238966 revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; %t A238966 Table[Length/@Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* _Gus Wiseman_, May 24 2020 *) %t A238966 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]]; %t A238966 P[n_] := P[n] = Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n]; %t A238966 T[n_, k_] := PrimeNu[P[n][[k + 1]]]; %t A238966 Table[T[n, k], {n, 0, 9}, {k, 0, Length[P[n]] - 1}] // Flatten (* _Jean-François Alcover_, Jan 03 2022, after _Alois P. Heinz_ in A063008 *) %o A238966 (PARI) %o A238966 Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))} %o A238966 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020 %Y A238966 Row sums are A006128. %Y A238966 Cf. A036043 in canonical order. %Y A238966 Cf. A001221, A063008. %Y A238966 Row lengths are A000041. %Y A238966 The generalization to compositions is A000120. %Y A238966 The sum of the partition is A036042. %Y A238966 The lexicographic version (sum/lex) is A049085. %Y A238966 Partition lengths of A080577. %Y A238966 The partition has A115623 distinct elements. %Y A238966 The Heinz number of the partition is A129129. %Y A238966 The colexicographic version (sum/colex) is A193173. %Y A238966 The maximum of the partition is A331581. %Y A238966 Partitions in lexicographic order (sum/lex) are A193073. %Y A238966 Partitions in colexicographic order (sum/colex) are A211992. %Y A238966 Cf. A026792, A036036, A080576, A103921, A112798, A182715, A333486, A334302, A334435, A334436, A334442. %K A238966 nonn,tabf %O A238966 0,4 %A A238966 _Sung-Hyuk Cha_, Mar 07 2014 %E A238966 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020