This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238968 #14 Mar 28 2020 19:21:38 %S A238968 0,1,1,2,1,3,6,1,3,4,7,12,1,3,5,8,11,18,30,1,3,5,8,6,12,19,15,24,38, %T A238968 60,1,3,5,8,7,13,20,16,19,30,46,37,58,90,140,1,3,5,8,7,13,20,8,17,20, %U A238968 31,47,23,36,43,66,100,52,80,122,185,280 %N A238968 Maximal level size of arcs in divisor lattice in canonical order. %H A238968 Andrew Howroyd, <a href="/A238968/b238968.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238968 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238968 T(n,k) = A238946(A063008(n,k)). - _Andrew Howroyd_, Mar 28 2020 %e A238968 Triangle T(n,k) begins: %e A238968 0; %e A238968 1; %e A238968 1, 2; %e A238968 1, 3, 6; %e A238968 1, 3, 4, 7, 12; %e A238968 1, 3, 5, 8, 11, 18, 30; %e A238968 1, 3, 5, 8, 6, 12, 19, 15, 24, 38, 60; %e A238968 ... %o A238968 (PARI) \\ here b(n) is A238946. %o A238968 b(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))} %o A238968 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238968 Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} %o A238968 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 28 2020 %Y A238968 Cf. A238955 in canonical order. %Y A238968 Cf. A063008, A238946. %K A238968 nonn,tabf %O A238968 0,4 %A A238968 _Sung-Hyuk Cha_, Mar 07 2014 %E A238968 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 28 2020