cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238969 Degree of divisor lattice in divisor lattice in canonical order.

This page as a plain text file.
%I A238969 #14 Mar 26 2020 19:48:43
%S A238969 0,1,2,2,2,3,3,2,3,4,4,4,2,3,4,4,5,5,5,2,3,4,4,4,5,5,6,6,6,6,2,3,4,4,
%T A238969 4,5,5,5,6,6,6,7,7,7,7,2,3,4,4,4,5,5,4,5,6,6,6,6,6,7,7,7,8,8,8,8,8,2,
%U A238969 3,4,4,4,5,5,4,5,6,6,6,5,6,6,7,7,7,6,7,7,8,8,8,8,9,9,9,9,9
%N A238969 Degree of divisor lattice in divisor lattice in canonical order.
%H A238969 Andrew Howroyd, <a href="/A238969/b238969.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238969 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238969 T(n,k) = A238949(A063008(n,k)). - _Andrew Howroyd_, Mar 26 2020
%e A238969 Triangle T(n,k) begins:
%e A238969   0;
%e A238969   1;
%e A238969   2, 2;
%e A238969   2, 3, 3;
%e A238969   2, 3, 4, 4, 4;
%e A238969   2, 3, 4, 4, 5, 5, 5;
%e A238969   2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6;
%e A238969   ...
%o A238969 (PARI)
%o A238969 C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
%o A238969 Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o A238969 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 26 2020
%Y A238969 Cf. A238956 in canonical order.
%Y A238969 Cf. A063008, A238949.
%K A238969 nonn,tabf
%O A238969 0,3
%A A238969 _Sung-Hyuk Cha_, Mar 07 2014
%E A238969 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 26 2020