This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238969 #14 Mar 26 2020 19:48:43 %S A238969 0,1,2,2,2,3,3,2,3,4,4,4,2,3,4,4,5,5,5,2,3,4,4,4,5,5,6,6,6,6,2,3,4,4, %T A238969 4,5,5,5,6,6,6,7,7,7,7,2,3,4,4,4,5,5,4,5,6,6,6,6,6,7,7,7,8,8,8,8,8,2, %U A238969 3,4,4,4,5,5,4,5,6,6,6,5,6,6,7,7,7,6,7,7,8,8,8,8,9,9,9,9,9 %N A238969 Degree of divisor lattice in divisor lattice in canonical order. %H A238969 Andrew Howroyd, <a href="/A238969/b238969.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238969 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238969 T(n,k) = A238949(A063008(n,k)). - _Andrew Howroyd_, Mar 26 2020 %e A238969 Triangle T(n,k) begins: %e A238969 0; %e A238969 1; %e A238969 2, 2; %e A238969 2, 3, 3; %e A238969 2, 3, 4, 4, 4; %e A238969 2, 3, 4, 4, 5, 5, 5; %e A238969 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6; %e A238969 ... %o A238969 (PARI) %o A238969 C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))} %o A238969 Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))} %o A238969 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 26 2020 %Y A238969 Cf. A238956 in canonical order. %Y A238969 Cf. A063008, A238949. %K A238969 nonn,tabf %O A238969 0,3 %A A238969 _Sung-Hyuk Cha_, Mar 07 2014 %E A238969 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 26 2020