cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238970 The number of nodes at even level in divisor lattice in canonical order.

This page as a plain text file.
%I A238970 #25 Jan 30 2025 15:38:55
%S A238970 1,1,2,2,2,3,4,3,4,5,6,8,3,5,6,8,9,12,16,4,6,8,10,8,12,16,14,18,24,32,
%T A238970 4,7,9,12,10,15,20,16,18,24,32,27,36,48,64,5,8,11,14,12,18,24,13,20,
%U A238970 23,30,40,24,32,36,48,64,41,54,72,96,128
%N A238970 The number of nodes at even level in divisor lattice in canonical order.
%H A238970 Andrew Howroyd, <a href="/A238970/b238970.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238970 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238970 From _Andrew Howroyd_, Mar 25 2020: (Start)
%F A238970 T(n,k) = A038548(A063008(n,k)).
%F A238970 T(n,k) = A238963(n,k) - A238971(n,k).
%F A238970 T(n,k) = ceiling(A238963(n,k)/2). (End)
%e A238970 Triangle T(n,k) begins:
%e A238970   1;
%e A238970   1;
%e A238970   2, 2;
%e A238970   2, 3, 4;
%e A238970   3, 4, 5,  6, 8;
%e A238970   3, 5, 6,  8, 9, 12, 16;
%e A238970   4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
%e A238970   ...
%p A238970 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p A238970     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p A238970 T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
%p A238970         ^x[i], i=1..nops(x)))/2), b(n$2))[]:
%p A238970 seq(T(n), n=0..9);  # _Alois P. Heinz_, Mar 25 2020
%t A238970 A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n];
%t A238970 A038548[n_] := Ceiling[DivisorSigma[0, n]/2];
%t A238970 T[n_] := A038548 /@ A063008row[n];
%t A238970 Table[T[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Jan 30 2025 *)
%o A238970 (PARI) \\ here b(n) is A038548.
%o A238970 b(n)={ceil(numdiv(n)/2)}
%o A238970 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238970 Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o A238970 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020
%Y A238970 Cf. A238957 in canonical order.
%Y A238970 Leftmost column gives A008619.
%Y A238970 Last terms of rows give A011782.
%Y A238970 Cf. A038548, A063008, A238963, A238971.
%K A238970 nonn,tabf
%O A238970 0,3
%A A238970 _Sung-Hyuk Cha_, Mar 07 2014
%E A238970 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020