This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238971 #19 Apr 24 2020 11:44:09 %S A238971 0,1,1,2,2,3,4,2,4,4,6,8,3,5,6,8,9,12,16,3,6,7,10,8,12,16,13,18,24,32, %T A238971 4,7,9,12,10,15,20,16,18,24,32,27,36,48,64,4,8,10,14,12,18,24,12,20, %U A238971 22,30,40,24,32,36,48,64,40,54,72,96,128 %N A238971 The number of nodes at odd level in divisor lattice in canonical order. %H A238971 Andrew Howroyd, <a href="/A238971/b238971.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238971 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238971 From _Andrew Howroyd_, Mar 25 2020: (Start) %F A238971 T(n,k) = A056924(A063008(n,k)). %F A238971 T(n,k) = A238963(n,k) - A238970(n,k). %F A238971 T(n,k) = floor(A238963(n,k)/2). (End) %e A238971 Triangle T(n,k) begins: %e A238971 0; %e A238971 1; %e A238971 1, 2; %e A238971 2, 3, 4; %e A238971 2, 4, 4, 6, 8; %e A238971 3, 5, 6, 8, 9, 12, 16; %e A238971 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32; %e A238971 ... %p A238971 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> %p A238971 [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): %p A238971 T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i) %p A238971 ^x[i], i=1..nops(x)))/2), b(n$2))[]: %p A238971 seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 25 2020 %o A238971 (PARI) %o A238971 b(n)={numdiv(n)\2} %o A238971 N(sig)={prod(k=1, #sig, prime(k)^sig[k])} %o A238971 Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} %o A238971 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020 %Y A238971 Cf. A238958 in canonical order. %Y A238971 Cf. A056924, A063008, A238963, A238970. %K A238971 nonn,tabf %O A238971 0,4 %A A238971 _Sung-Hyuk Cha_, Mar 07 2014 %E A238971 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020