cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238971 The number of nodes at odd level in divisor lattice in canonical order.

This page as a plain text file.
%I A238971 #19 Apr 24 2020 11:44:09
%S A238971 0,1,1,2,2,3,4,2,4,4,6,8,3,5,6,8,9,12,16,3,6,7,10,8,12,16,13,18,24,32,
%T A238971 4,7,9,12,10,15,20,16,18,24,32,27,36,48,64,4,8,10,14,12,18,24,12,20,
%U A238971 22,30,40,24,32,36,48,64,40,54,72,96,128
%N A238971 The number of nodes at odd level in divisor lattice in canonical order.
%H A238971 Andrew Howroyd, <a href="/A238971/b238971.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238971 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238971 From _Andrew Howroyd_, Mar 25 2020: (Start)
%F A238971 T(n,k) = A056924(A063008(n,k)).
%F A238971 T(n,k) = A238963(n,k) - A238970(n,k).
%F A238971 T(n,k) = floor(A238963(n,k)/2). (End)
%e A238971 Triangle T(n,k) begins:
%e A238971   0;
%e A238971   1;
%e A238971   1, 2;
%e A238971   2, 3, 4;
%e A238971   2, 4, 4,  6, 8;
%e A238971   3, 5, 6,  8, 9, 12, 16;
%e A238971   3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32;
%e A238971   ...
%p A238971 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p A238971     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p A238971 T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i)
%p A238971         ^x[i], i=1..nops(x)))/2), b(n$2))[]:
%p A238971 seq(T(n), n=0..9);  # _Alois P. Heinz_, Mar 25 2020
%o A238971 (PARI)
%o A238971 b(n)={numdiv(n)\2}
%o A238971 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238971 Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o A238971 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020
%Y A238971 Cf. A238958 in canonical order.
%Y A238971 Cf. A056924, A063008, A238963, A238970.
%K A238971 nonn,tabf
%O A238971 0,4
%A A238971 _Sung-Hyuk Cha_, Mar 07 2014
%E A238971 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020