cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order.

This page as a plain text file.
%I A238972 #15 Mar 28 2020 17:48:53
%S A238972 0,1,1,2,2,4,6,2,5,6,10,16,3,7,9,14,17,26,40,3,8,11,18,12,23,36,27,42,
%T A238972 64,96,4,10,14,22,16,30,46,32,38,58,88,68,102,152,224,4,11,16,26,19,
%U A238972 36,56,20,41,48,74,112,52,80,93,140,208,108,162,240,352,512
%N A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order.
%H A238972 Andrew Howroyd, <a href="/A238972/b238972.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238972 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238972 From _Andrew Howroyd_, Mar 28 2020: (Start)
%F A238972 T(n,k) = A238950(A063008(n,k)).
%F A238972 T(n,k) = A238964(n,k) - A238973(n,k).
%F A238972 T(n,k) = ceiling(A238964(n,k)/2). (End)
%e A238972 Triangle T(n,k) begins:
%e A238972   0;
%e A238972   1;
%e A238972   1, 2;
%e A238972   2, 4,  6;
%e A238972   2, 5,  6, 10, 16;
%e A238972   3, 7,  9, 14, 17, 26, 40;
%e A238972   3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
%e A238972   ...
%p A238972 with(numtheory):
%p A238972 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p A238972     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p A238972 T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors
%p A238972     (p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]:
%p A238972 seq(T(n), n=0..9);  # _Alois P. Heinz_, Mar 28 2020
%Y A238972 Cf. A238959 in canonical order.
%Y A238972 Cf. A063008, A238950, A238964, A238973.
%K A238972 nonn,tabf
%O A238972 0,4
%A A238972 _Sung-Hyuk Cha_, Mar 07 2014
%E A238972 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 28 2020