This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238972 #15 Mar 28 2020 17:48:53 %S A238972 0,1,1,2,2,4,6,2,5,6,10,16,3,7,9,14,17,26,40,3,8,11,18,12,23,36,27,42, %T A238972 64,96,4,10,14,22,16,30,46,32,38,58,88,68,102,152,224,4,11,16,26,19, %U A238972 36,56,20,41,48,74,112,52,80,93,140,208,108,162,240,352,512 %N A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order. %H A238972 Andrew Howroyd, <a href="/A238972/b238972.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20) %H A238972 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014. %F A238972 From _Andrew Howroyd_, Mar 28 2020: (Start) %F A238972 T(n,k) = A238950(A063008(n,k)). %F A238972 T(n,k) = A238964(n,k) - A238973(n,k). %F A238972 T(n,k) = ceiling(A238964(n,k)/2). (End) %e A238972 Triangle T(n,k) begins: %e A238972 0; %e A238972 1; %e A238972 1, 2; %e A238972 2, 4, 6; %e A238972 2, 5, 6, 10, 16; %e A238972 3, 7, 9, 14, 17, 26, 40; %e A238972 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96; %e A238972 ... %p A238972 with(numtheory): %p A238972 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> %p A238972 [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): %p A238972 T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors %p A238972 (p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]: %p A238972 seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 28 2020 %Y A238972 Cf. A238959 in canonical order. %Y A238972 Cf. A063008, A238950, A238964, A238973. %K A238972 nonn,tabf %O A238972 0,4 %A A238972 _Sung-Hyuk Cha_, Mar 07 2014 %E A238972 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 28 2020