cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238974 The size (the number of arcs) in the transitive closure of divisor lattice in canonical order.

This page as a plain text file.
%I A238974 #16 Mar 26 2020 18:53:56
%S A238974 0,1,3,5,6,12,19,10,22,27,42,65,15,35,48,74,90,138,211,21,51,75,115,
%T A238974 84,156,238,189,288,438,665,28,70,108,165,130,240,365,268,324,492,746,
%U A238974 594,900,1362,2059,36,92,147,224,186,342,519,200,410,495,750,1135,552,836,1008,1524,2302,1215,1836,2772,4182,6305
%N A238974 The size (the number of arcs) in the transitive closure of divisor lattice in canonical order.
%H A238974 Andrew Howroyd, <a href="/A238974/b238974.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A238974 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F A238974 T(n,k) = A238952(A063008(n,k)). - _Andrew Howroyd_, Mar 26 2020
%e A238974 Triangle T(n,k) begins:
%e A238974    0;
%e A238974    1;
%e A238974    3,  5;
%e A238974    6, 12, 19;
%e A238974   10, 22, 27,  42, 65;
%e A238974   15, 35, 48,  74, 90, 138, 211;
%e A238974   21, 51, 75, 115, 84, 156, 238, 189, 288, 438, 665;
%e A238974   ...
%p A238974 with(numtheory):
%p A238974 f:= n-> add(tau(d), d=divisors(n) minus {n}):
%p A238974 b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p A238974     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p A238974 T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
%p A238974 seq(T(n), n=0..9);  # _Alois P. Heinz_, Mar 26 2020
%o A238974 (PARI) \\ here b(n) is A238952.
%o A238974 b(n) = {sumdivmult(n, d, numdiv(d)) - numdiv(n)}
%o A238974 N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o A238974 Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o A238974 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 26 2020
%Y A238974 Cf. A238961 in canonical order.
%Y A238974 Cf. A063008, A238952.
%K A238974 nonn,tabf
%O A238974 0,3
%A A238974 _Sung-Hyuk Cha_, Mar 07 2014
%E A238974 Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 26 2020