This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238978 #17 Feb 06 2017 17:59:43 %S A238978 0,0,0,1,1,3,9,28,93,321,1168,4404,17328,70408,296436,1284768,5740804, %T A238978 26332788,124066608,598625296,2958281328,14941136784,77111251408, %U A238978 406028059968,2180584156176,11930067296848,66468429865344,376770132276288,2172036623279488 %N A238978 Number of ballot sequences of length n with exactly 3 fixed points. %C A238978 The fixed points are in the first 3 positions. %C A238978 Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, and 3, but not 4. An alternate definition uses the first row. %H A238978 Joerg Arndt and Alois P. Heinz, <a href="/A238978/b238978.txt">Table of n, a(n) for n = 0..800</a> %H A238978 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %F A238978 See Maple program. %F A238978 a(n) ~ sqrt(2)/16 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - _Vaclav Kotesovec_, Mar 07 2014 %F A238978 Recurrence (for n>=5): (n-4)*(n^3 - 10*n^2 + 27*n - 26)*a(n) = (n^4 - 14*n^3 + 67*n^2 - 150*n + 152)*a(n-1) + (n-5)*(n-3)*(n^3 - 7*n^2 + 10*n - 8)*a(n-2). - _Vaclav Kotesovec_, Mar 08 2014 %e A238978 a(3) = 1: [1,2,3]. %e A238978 a(4) = 1: [1,2,3,1]. %e A238978 a(5) = 3: [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,4]. %e A238978 a(6) = 9: [1,2,3,1,1,1], [1,2,3,1,1,2], [1,2,3,1,1,4], [1,2,3,1,2,1], [1,2,3,1,2,3], [1,2,3,1,2,4], [1,2,3,1,4,1], [1,2,3,1,4,2], [1,2,3,1,4,5]. %p A238978 a:= proc(n) option remember; `if`(n<4, n*(n-1)*(n-2)/6, %p A238978 ((4*n^3-54*n^2+216*n-254) *a(n-1) %p A238978 +(n-5)*(3*n^3-31*n^2+84*n-30) *a(n-2) %p A238978 -(n-5)*(n-6)*(n^2-3*n-8) *a(n-3)) / %p A238978 ((n-3)*(3*n^2-33*n+86))) %p A238978 end: %p A238978 seq(a(n), n=0..40); %t A238978 b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 3, 1, b[n - 4, {2, 1, 1}]]; a[n_ /; n < 3] = 0; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* _Jean-François Alcover_, Feb 06 2015, after Maple *) %Y A238978 Column k=3 of A238802. %K A238978 nonn,easy %O A238978 0,6 %A A238978 _Joerg Arndt_ and _Alois P. Heinz_, Mar 07 2014